
DOT NET PROGRAMMING

DOT NET PROGRAMMING

CHAPTER – 5: Data access with ADO.NET

SESSION – 37 : The Two Faces Of ADO.NET,

Definition: ADO is a rich set of classes, interfaces, structures, and
enumerated types that manage data access from various types of data stores.

 Enterprise applications handle a large amount of data. This data is primarily stored in
relational databases, like Oracle, SQL Server, Access, and so on. These databases use
Structured Query Language (SQL) for retrieval of data.

 To access enterprise data from a .NET application, an interface was needed. This interface
acts as a bridge between an RDBMS system and a .Net application. ADO.NET is such an
interface that is created to connect .NET applications to RDBMS systems.

 In the .NET framework, Microsoft introduced a new version of Active X Data Objects
(ADO) called ADO.NET. Any .NET application, either Windows-based or web-based, can
interact with the database using a rich set of classes of the ADO.NET library. Data can be
accessed from any database using connected or disconnected architecture.

 There were many data access technologies available prior to ADO.NET, primarily the
following:

 Open Database Connectivity (ODBC)
 Data Access Objects (DAO)
 Remote Data Objects (RDO)
 Active X Data Objects (ADO)


 ADO is a simple component-based object-oriented interface to access data whether
relational or non-relational databases. It is a successor of DAO and RDO.



 ADO reduces the number of objects. Their properties, methods, and events.
 ADO is built on COM; specifically Activex
 ADO supports universal data access using Object Linking and Embedding for DataBases

(OLEDB). This means that there are no restrictions on the type of data that can be accessed.

ADO.NET provides mainly the following two types of architectures:

1. Connected Architecture
2. Disconnected Architecture

 ADO.NET Architecture

DOT NET PROGRAMMING

 Connected Architecture

1. In the connected architecture, connection with a data source is kept open constantly for data
access as well as data manipulation operations.

2. The ADO.NET Connected architecture considers mainly three types of objects.
1. SqlConnection con;
2. SqlCommand cmd;
3. SqlDataReader dr;

Disconnected Architecture

1. Disconnected is the main feature of the .NET framework. ADO.NET contains various
classes that support this architecture. The .NET application does not always stay connected
with the database. The classes are designed in a way that they automatically open and close
the connection. The data is stored client-side and is updated in the database whenever
required.

2. The ADO.NET Disconnected architecture considers primarily the following types of
objects:

1. DataSet ds;
2. SqlDataAdapter da;
3. SqlConnection con;
4. SqlCommandBuilder bldr;

DOT NET PROGRAMMING

Introduction : The .NET platform defines a number of types that allow us to interact with local and

remote data stores. These namespaces are known as ADO.NET.

The System.Data namespace types specifically DataColumn, DataRow, and DataTable.

These classes allow us to define and manipulate a local in memory table of data. ADO.NET, the

DataSet is an in-memory representation of a collection of interrelated tables. In this chapter, we

will learn how to programmatically model table relationships, establish custom views based on

a given DataTable, and submit queries against your in-memory DataSet. How to obtain a

populated DataSet from a Database Management System (DBMS) such as MS SQL Server,

Oracle, or MS Access. During the process, we will examine the role of .NET data providers and

come to understand the use of ADO.NET data adapters, command objects, and command

builders.

In contrast to the intrinsically disconnected world of DataSets and data adapters, this

chapter also examines the connected layer of ADO.NET and the related data reader types. As

you will see, the data reader is ideal when you simply wish to obtain a result set from a data

store for display purposes. We wrap things up with an overview of various database-centric

wizards of Visual Studio .NET, and come to see how these integrated tools can be used to lessen

the amount of ADO.NET code you would otherwise need to write by hand.

The Need for ADO.NET : The very first thing we must understand when approaching

ADO.NET is that it is not simply the latest and greatest version of classic ADO. While it is true

that there is some symmetry between the two systems (e.g., each has the concept of connection

and command objects), some familiar types (e.g., the Recordset) no longer exist. Furthermore,

there are a number of new ADO.NET types that have no direct equivalent under classic ADO

(such as the data adapter). In a nutshell, “ADO.NET is a brand new database access technology

focused on facilitating the development of disconnected (and connected) systems using the .NET

platform.”

Unlike classic ADO, which was primarily designed for tightly coupled client/server systems,

ADO.NET greatly extends the notion of the primitive ADO disconnected Recordset with a new

creature named the DataSet. This type represents a local copy of any number of related tables.

Using the DataSet, the client is able to manipulate and update its contents while disconnected

from the data source and submit the modified data back for processing using a related data adapter.

DOT NET PROGRAMMING

Another major difference between classic ADO and ADO.NET is that ADO.NET

has full support for XML data representation. In fact, the data obtained from a data

store is internally represented, and transmitted, as XML. Given that XML is often

transported between layers using standard HTTP, ADO.NET is not limited by firewall

constraints.

As we might be aware, classic ADO makes use of the COM marshaling protocol

to move data between tiers. While this was appropriate in some situations, COM

marshaling poses a number of limitations. For example, most firewalls are configured

to reject COM RPC packets, which made moving data between machines tricky.

Perhaps the most fundamental difference between classic ADO and ADO.NET is

that ADO.NET is a managed library of code and therefore plays by all the same rules as

any managed library. The types that comprise ADO.NET use the CLR memory

management protocol, adhere to the same programming model, and work with many

languages. Therefore, the types (and their members) are accessed in the same manner,

regardless of which .NET-aware language you use.

The Two Faces of ADO.NET : The ADO.NET libraries can be used in two

conceptually unique manners: connected or disconnected. When we are making use of

the connected layer, we will make use of a .NET data reader. Data readers provide a

way to pull records from a data store using a forward-only, read-only approach. As a

given data reader pulls over records based on our SQL query, we are directly connected

to the data store and stay that way until we explicitly close the connection. In addition

to simply reading data via a data reader, the connected layer of ADO.NET allows us to

insert, update, or remove records using a related command object.

The disconnected layer, on the other hand, allows us to obtain a set of DataTable

types (typically contained within a DataSet) that serves as a local client-side copy of

information. When we obtain a DataSet using a data adapter type, the connection is

automatically terminated immediately after the fill request (as you would guess, this

approach helps quickly free up connects for other callers). At this point, the client

application is able to manipulate the DataSet's contents without incurring any network

traffic. If the client wishes to push the changes back to the data store, the data adapter

(in conjunction with a set of SQL queries) is used once again to update the data source, at

which point the connection is again closed immediately.

DOT NET PROGRAMMING

In some respects, this approach may remind us of the classic ADO disconnected

Recordset. The key difference is that a disconnected Recordset represents a single set of record

data, whereas ADO.NET DataSets can model a collection of related tables. In fact, it is

technically possible to obtain a client-side DataSet that represents all of the tables found within

the remote database. However, as we would expect, a DataSet will more commonly contain a

reasonable subset of information.

--

Understanding the ADO.NET Namespaces : .
NET version 1.1 ships with five data providers out of the box, each of which is logically
represented by a specific .NET namespace. In addition, ADO.NET defines some common

DOT NET PROGRAMMING

namespaces that are used by all data provider implementations. Below table gives a quick rundown
of each data-centric .NET namespace.

The System.Data, System.Data.Common,

System.Data.OleDb, System.Data.SqlClient, System.Data.Odbc, and

System.Data.SqlTypes namespaces are all contained within the System.Data.dll

assembly. However, the types of the System.Data.OracleClient namespaces are

contained within a separate assembly named System.Data.OracleClient.dll, while the

SqlCe types are placed within System.Data.Sqlservice.dll. Thus, like any .NET

endeavor, be sure to set the correct external references (and C# "using" statements) for

our current project.

The Types of System.Data : Of all the ADO.NET namespaces, System.Data is the

lowest common denominator. We simply cannot build ADO.NET applications without

specifying this namespace in our data access applications. This namespace contains

types that are shared among all ADO.NET data providers, regardless of the underlying

data store. In a nutshell, System.Data contains types that represent the data we obtain

DOT NET PROGRAMMING

from a data store, but not the types that make the literal connection. In addition to a

number of database-centric exceptions

(NoNullAllowedException, RowNotInTableException,

MissingPrimaryKeyException, and the like), these types are little more than OO

representations of common database primitives (tables, rows, columns, constraints, and

so on). Below table lists some of the core types, grouped by related functionality.

Selecting a Data Provider :
.NET 1.1 ships with five data providers. The first of these is OleDb data provider, which is

composed of types defined in System.Data.OleDb namespace. The OleDb provider allows us to

access data located in any data store that supports the classic OLE DB protocol. Thus, like with

classic ADO, we may use the ADO.NET data provider to access SQL Server, Oracle, or MS Access

databases. Because the types in the System.Data.OleDb namespace must communicate with

unmanaged code (e.g., the OLE DB providers), we need to be aware that a number of .NET to

COM translations occur behind the scenes, which can affect performance. By and large, this

namespace is useful when we are attempting to communicate with a data source that does not have

a specific data provider assembly. fic data provider assembly.

DOT NET PROGRAMMING

The SQL data provider offers direct access to MS SQL Server data stores, and

only SQL Server data stores (version 7.0 and greater). The System.Data.SqlClient

namespace contains the types used by the SQL provider and provides the same

functionality as the OleDb provider. In fact, for the most part, both namespaces have

similarly named items. The key difference is that the SQL provider does not use the

OLE DB or classic ADO protocols and thus offers numerous performance benefits.

If we are interested in making use of the System.Data.Oracle,

System.Data.Odbc, or System.Data.SqlServerCe namespaces, I will assume you will

check out the details as you see fit. However, as you would hope, once you are

comfortable with one data provider, you can easily manipulate other providers. Recall

that while the exact names of the types will differ between namespaces (for example,

OleDbConnection vs. SqlConnection vs. OdbcConnection), semantically related types

can be treated in a polymorphic manner given the IDbCommand, IDbConnection,

IDbDataAdapter, and IDataReader interfaces et al.

To begin, we'll examine how to connect to a data source using the OleDb data provider,

therefore don't forget to specify the proper using directives (recall this data provider is

contained within the System.Data.dll assembly) :

// Using the OleDb data provider.
using System.Data;

using System.Data.OleDb;

Once we have checked out how to interact with a data store using the OleDb data

provider, we will see how to make use of the types within the System.Data.SqlClient

namespace.

DOT NET PROGRAMMING

The Types of the System.Data.OleDb Namespace :
Below Table provides a walkthrough of the core types of the System.Data.OleDb namespace.

Understanding the ADO.NET Namespaces : .
NET version 1.1 ships with five data providers out of the box, each of which is logically
represented by a specific .NET namespace. In addition, ADO.NET defines some common
namespaces that are used by all data provider implementations. Below table gives a quick rundown
of each data-centric .NET namespace.

DOT NET PROGRAMMING

Selecting a Data Provider :
.NET 1.1 ships with five data providers. The first of these is OleDb data provider, which is

composed of types defined in System.Data.OleDb namespace. The OleDb provider allows us to

access data located in any data store that supports the classic OLE DB protocol. Thus, like with

classic ADO, we may use the ADO.NET data provider to access SQL Server, Oracle, or MS Access

databases. Because the types in the System.Data.OleDb namespace must communicate with

unmanaged code (e.g., the OLE DB providers), we need to be aware that a number of .NET to

COM translations occur behind the scenes, which can affect performance. By and large, this

namespace is useful when we are attempting to communicate with a data source that does not have

a specific data provider assembly. fic data provider assembly.

The SQL data provider offers direct access to MS SQL Server data stores, and

only SQL Server data stores (version 7.0 and greater).

The System.Data.SqlClient namespace contains the types used by the SQL

provider and provides the same functionality as the OleDb provider. In fact, for the

most part, both namespaces have similarly named items. The key difference is that the

SQL provider does not use the OLE DB or classic ADO protocols and thus offers

numerous performance benefits.

If we are interested in making use of the System.Data.Oracle,

System.Data.Odbc, or System.Data.SqlServerCe namespaces, I will assume you will

DOT NET PROGRAMMING

check out the details as you see fit. However, as you would hope, once you are

comfortable with one data provider, you can easily manipulate other providers. Recall

that while the exact names of the types will differ between namespaces (for example,

OleDbConnection vs. SqlConnection vs. OdbcConnection), semantically related types

can be treated in a polymorphic manner given the IDbCommand, IDbConnection,

IDbDataAdapter, and IDataReader interfaces et al.

To begin, we'll examine how to connect to a data source using the OleDb data provider,

therefore don't forget to specify the proper using directives (recall this data provider is

contained within the System.Data.dll assembly) :

// Using the OleDb data provider.
using System.Data;

using System.Data.OleDb;

Once we have checked out how to interact with a data store using the OleDb data

provider, we will see how to make use of the types within the System.Data.SqlClient

namespace.

The Types of the System.Data.OleDb Namespace :
Below Table provides a walkthrough of the core types of the System.Data.OleDb namespace.

DOT NET PROGRAMMING

The Role of ADO.NET Data Providers :

Rather than providing a single set of objects to communicate to a variety of data stores,
ADO.NET makes use of multiple data providers.Simply put, a data provider is a set of types
(within some .NET assembly) that understand how to communicate with a specific data source.
Although the names of these types will differ among data providers, each provider will have (at
minimum) a set of class types thatimplement some key interfaces defined in the System.Data
namespace, specifically IDbCommand, IDbDataAdapter,

IDbConnection, and IDataReader.

As we would guess, these interfaces define the behaviors a managed provider must support to
provide connected and disconnected access to the underlying data store (as shown in Figure).

The Role of the IDbConnection and IDbTransaction Interfaces : First we have the

IDbConnection type, which is implemented by a data provider's connection object. This

interface defines a set of members used to connect to (and disconnect from) a specific data

store, as well as allowing us to obtain the dataprovider's transactional object, which

implements the System.Data.IDbTransaction interface:

DOT NET PROGRAMMING

public interface System.Data.IDbConnection : IDisposable

{ string ConnectionString { get; set; }

int ConnectionTimeout { get; }

string Database { get; }

ConnectionState State { get; }
 System.Data.IDbTransaction BeginTransaction();

System.Data.IDbTransaction BeginTransaction(System.Data.IsolationLevel il);
void ChangeDatabase(string databaseName);
 void Close();
System.Data.IDbCommand CreateCommand();

void Open();
}

As we can see, the overloaded BeginTransaction() method provides access to an

IDbTransaction-compatible type. Using the members defined by this interface, we are

able to programmatically interact with a transactional session and the underlying data

store:

public interface System.Data.IDbTransaction : IDisposable {
IDbConnection Connection { get; }
IsolationLevel IsolationLevel { get; }
void Commit();

void Rollback();
}

The Role of the IDbCommand, IDbDataParameter, and IDataParameter Interfaces :

The IDbCommand interface, which will be implemented by a data provider's command

object. Like other data access object models, command objects allow programmatic

manipulation of SQL statements, stored procedures, and parameterized queries (note

that each parameter object implements the IDbDataParameter type). In addition,

command objects also provide access to the data provider's data reader type via the

overloaded ExecuteReader() method:

public interface System.Data.IDbCommand : IDispos
able { string CommandText { get; set; }

DOT NET PROGRAMMING

int CommandTimeout { get; set; } Comm
andType CommandType { get; set; } IDb
Connection Connection { get; set; } IData
ParameterCollection Parameters { get; } I
DbTransaction Transaction { get; set; }
UpdateRowSource UpdatedRowSource { get;
set; } void Cancel();
System.Data.IDbDataParameter CreateParamet
er(); int ExecuteNonQuery();

System.Data.IDataReader ExecuteReader();
System.Data.IDataReader ExecuteReader(System.Data.CommandBehavior behavi
or);

 Object ExecuteScalar();
void Prepare();

}

Notice that the Parameters property returns a strongly typed collection th
at implements IDataParameterCollection. This interface provides access to a se
t of IDbDataParametercompliant data types (e.g., parameter objects):

public interface System.Data.IDbDataParameter : System.Data.IDataPara
meter { byte Precision { get; set; }

byte Scale { get; se
t; } int Size { get; se
t; }

}

IDbDataParameter extends the IDataParameter interface to obtain the

following additional behaviors :

public interface System.Data.IDataParameter
{ DbType DbType { get; set; }
ParameterDirection Direction { get; set; } bool
IsNullable { get; } string ParameterName { get;
set; } string SourceColumn { get; set; }
DataRowVersion
SourceVersion { get; set; } object Value { get; set;

}

}

DOT NET PROGRAMMING

The functionality of the IDbDataParameter and IDataParameter interfaces allow

us to represent parameters within a SQL query (as well as stored procedures) via

specific ADO.NET parameter objects, rather than hard-coded strings.

The Role of the IDbDataAdapter and IDataAdapter Interfaces :Recall that data

adapters are used to push and pull DataSets to and from a given data store. Given this,

IDbDataAdapter interface defines a set of properties that are used to maintain the SQL

statements for the related SELECT, INSERT, UPDATE, and DELETE operations:

public interface System.Data.IDbDataAdapter : System.Data.IDataAd
apter {

IDbCommand DeleteCommand { get; set; }
IDbCommand InsertCommand { get; se
t; } IDbCommand SelectCommand { ge
t; set;}
IDbCommand UpdateCommand { get; set; }

}

In addition to these four properties, an ADO.NET data adapter also picks up the

behavior defined in the base interface, IDataAdapter. This interface defines the key function of

a data adapter type: the ability to push and pull DataSets between the caller and underlying data

store

using the Fill() and Update() methods. Also, the IDataAdapter interface allows you to map

database column names to a more human-readable display name via the TableMappings

property:

public interface System.Data.IDataAdapter
{

MissingMappingAction MissingMappingAction { get; set; }
MissingSchemaAction MissingSchemaAction { get; set; }
 ITableMappingCollection TableMappings { get; }
int Fill(System.Data.DataSet dataSet);
System.Data.DataTable[] FillSchema(System.Data.DataSet data
Set, System.Data.SchemaType schemaType); System.Data.IDat
aParameter[] GetFillParameters(); int Update(System.Data.Data
Set dataSet);

}

DOT NET PROGRAMMING

The Role of the IDataReader and IDataRecord Interfaces : The IDataReader

interface, represents the common behaviors supported by a given data reader type.

When we obtain an IDataReader-compatible type from an ADO.NET data provider, we

are able to iterate over the result set using a forward-only, read-only manner.

public interface System.Data.IDataReader : IDispo
sable, System.Data.IDataRecord

{
int Depth { get; } b
ool IsClosed { get;
}

int RecordsAffected { ge
t; } void Close();
System.Data.DataTable GetSchemaTa
ble(); bool NextResult();

bool Read();
}

IDataReader extends IDataRecord, which defines an additional set of members that

allow us to extract out a strongly typed value from the stream, rather than casting the

generic System.Object retrieved from the data reader's overloaded indexer method:

public interface System.Data.IDataRecord
{

int FieldCount { get; }
object this[string name] { ge
t; } object this[int i] { get; }
bool GetBoolean(int
i); byte GetByte(int
i);
long GetBytes(int i, long fieldOffset, byte[] buffe
r, int bufferoffset, int length);
char GetChar(int i);
long GetChars(int i, long fieldoffset, char[] buffer,
int bufferoffset, int length); System.Data.IDataRe
ader GetData(int i); string GetDataTypeName(int
i); DateTime GetDateTime(int i);

}

DOT NET PROGRAMMING

ADO.NET
ADO.NET is a set of classes (a framework) to interact with data sources such as databases and
XML files. ADO is the acronym for ActiveX Data Objects. It allows us to connect to underlying
data or databases. It has classes and methods to retrieve and manipulate data.

The following are a few of the .NET applications that use ADO.NET to connect to a database,
execute commands and retrieve data from the database.

 ASP.NET Web Applications
 Console Applications
 Windows Applications.

Various Connection Architectures
There are the following two types of connection architectures:

1. Connected architecture: the application remains connected with the database throughout
the processing.

2. Disconnected architecture: the application automatically connects/disconnects during the
processing. The application uses temporary data on the application side called a DataSet.

Understanding ADO.NET and it's class library

In this diagram, we can see that there are various types of applications (Web
Application, Console Application, Windows Application and so on) that use
ADO.NET to connect to databases (SQL Server, Oracle, OleDb, ODBC, XML
files and so on).

Important Classes in ADO.NET

DOT NET PROGRAMMING

We can also observe various classes in the preceding diagram. They are:

1. Connection Class
2. Command Class
3. DataReader Class
4. DataAdaptor Class
5. DataSet.Class

1. Connection Class

In ADO.NET, we use these connection classes to connect to the database.
These connection classes also manage transactions and connection pooling.
To learn more about connection classes, start here: Connection in ADO.NET.

Connection Object

 One of the first ADO.NET objects is the connection object, that allows you to establish a
connection to a data source.

 The connection objects have the methods for opening and closing connections, for beginning
a transaction of data.

 The .Net Framework provides two types of connection classes:
The sqlconnection object, that is designed specially to connect to Microsoft SQL Server and
the OleDbConnection object, that is designed to provide connection to a wide range of
databases, such as Microsoft Access and Oracle.

 A connection is required to interact with the database. A Connection object helps to identify
the database server name, user name and password to connect to the database. The
Connection object is used by commands on the database.

 A Connection object has the responsibility of establishing a connection with the data store.
 How to use the Sqlconnection object:

o Instantiate the SqlConnection class.

o Open connection.

o Pass the connection to ADO.NET objects.

o Perform the database operations with ADO.NET object.

o Close the connection.

Connection String

No.
Connection String Parameter
Name

Description

DOT NET PROGRAMMING

1 Data Source
Identify the server. Could be a local machine, machine domain
name, or IP Address.

2 Initial Catalog Data base name.

3 Integrated Security Set to SSIP to make a connection with the user's window log in.

4 User ID Name of user configured in SQL Server.

5 Password Password matching SQL Server User ID

The connection string is different for each of the various data providers available in .NET 2.0. There
are different connection strings for the various types of data sources. You can find a list of all the
available providers for creating a connection in a table:

No Provider Description

1 System.Data.SqlClient Provides data for Microsoft SQL Server

2 System.Data.OleDb Provides data access for data sources exposed using OLE DB

3 System.Data.Odbc Provides data access for data source exposed using ODBC.

4 System.Data.OracleClient Provides data access for Oracle.

2. Command Class

The Command class provides methods for storing and executing SQL
statements and Stored Procedures. The following are the various commands
that are executed by the Command Class.

 ExecuteReader: Returns data to the client as rows. This would typically be an SQL select
statement or a Stored Procedure that contains one or more select statements. This method
returns a DataReader object that can be used to fill a DataTable object or used directly for
printing reports and so forth.

 ExecuteNonQuery: Executes a command that changes the data in the database, such as an
update, delete, or insert statement, or a Stored Procedure that contains one or more of these
statements. This method returns an integer that is the number of rows affected by the query.

 ExecuteScalar: This method only returns a single value. This kind of query returns a count
of rows or a calculated value.

 ExecuteXMLReader: (SqlClient classes only) Obtains data from an SQL Server 2000
database using an XML stream. Returns an XML Reader object.

3. DataReader Class

The DataReader is used to retrieve data. It is used in conjunction with the
Command class to execute an SQL Select statement and then access the
returned rows. Learn more here: Data Reader in C#.

4. DataAdapter Class

The DataAdapter is used to connect DataSets to databases. The DataAdapter
is most useful when using data-bound controls in Windows Forms, but it can

DOT NET PROGRAMMING

also be used to provide an easy way to manage the connection between your
application and the underlying database tables, views and Stored Procedures.
Learn more here: Data Adapter in ADO.NET.

5. DataSet Class

The DataSet is the heart of ADO.NET. The DataSet is essentially a collection
of DataTable objects. In turn each object contains a collection of DataColumn
and DataRow objects. The DataSet also contains a Relations collection that
can be used to define relations among Data Table Objects.

ADO.NET :

 The connected layer provides functionality for running SQL syntax against a connected database.
The statements can be select, insert, update or delete as well as execute schema statements and the
ability to run stored procedures and functions.

The connected layer requires the database connection to remain open while the database
transactions are being performed.

Command Objects
The Command object represents a SQL statement to be run; select, insert, update, delete, execute
schema, execute stored procedure etc.

The DbCommand is configured to execute an sql statement or stored procedure via the
CommandText property.

The CommandType defines the type of sql statement to be executed which is stored in the
CommandText property.

CommandType Description

StoredProcedure
CommandText contains the name of a StoredProcedure or
UserFunction.

TableDirect
CommandText contains a table name. All rows and columns
will be returned from the table.

Text CommandText defines an SQL statement to be executed.

The CommandType will default to Text however it is good practice to explicitly set it.

1 var connectionDetails =

DOT NET PROGRAMMING

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

ConfigurationManager.ConnectionStrings ["MyDatabase"];

var providerName = connectionDetails.ProviderName;
var connectionString = connectionDetails.ConnectionString;

var dbFactory = DbProviderFactories.GetFactory (providerName);

using(var cn = dbFactory.CreateConnection())
{
 cn.ConnectionString = connectionString;
 cn.Open();

 var cmd = cn.CreateCommand();

 cmd.CommandText = "Select * from MyTable";
 cmd.CommandType = CommandType.Text;
 cmd.Connection = cn;
}

The command should be passed the connection via the Connection property.

The command object will not touch the database until the either the ExecuteReader,
ExecuteNonQuery or equivalent has been called upon.

DataReader
The DataReader class allows a readonly iterative view of the data returned from a configured
command object.

A DataReader is instantiated by calling ExecuteReader upon the command object.

The DataReader exposes a forward only iterator via the Read method which returns false when the
collection has been completely iterated.

The DataReader represents both the collection of records and also the individual records; access to
the data is made by calling methods upon the DataReader.

DataReader implements IDisposable and should be used within a using scope.

Data can be accessed by field name and also ordinal position via the index method[] which returns
the data cast into object. Alternatively methods exist to get the data for any .NET primitive type.

DOT NET PROGRAMMING

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using (var dr = cmd.ExecuteReader ()) {
while (dr.Read ()) {
var val1 = (string)dr ["FieldName"];
var val2 = (int)dr [0];

// Get the field name or its ordinal position
var name = dr.GetName (1);

var pos = dr.GetOrdinal ("FieldName");

// Strongly Types Data
var val3 = dr.GetInt32 (1);
var val4 = dr.GetDecimal (2);
var val5 = dr.GetDouble (3);
var val6 = dr.GetString (4);

var isNull = dr.IsDBNull (5);

var fdType = dr.GetProviderSpecificFieldType (6);
}
}

The IsDBNull method can be used to determine if a value contains a null. A .NET type
representation of the contained field can be retrieved with the GetProviderSpecificFieldType
method.

Multiple Results

If the select statement of a command has multiple results the DataReader.NextResult() method
exposes a forward only iterator through each result group:

1
2
3
4
5
6
7
8
9
10

string strSQL = "Select * From MyTable;Select * from MyOtherTable";

NextResult increments to the next result group, just like Read it returns false on
ce the collection has been exhausted:

using (var dr = cmd.ExecuteReader ()) {
while (dr.NextResult ()) {
while (dr.Read ()) {
}
}
}

DOT NET PROGRAMMING

DataSet

DataReader can be used to fill a DataSet. We talk more about DataSet within the disconnected layer
in the next chapter.

1
2
3
4
5
6

var dtable = new DataTable();

using(var dr = cmd.ExecuteReader())
{
dtable.Load(dr);
}

ExecuteNonQuery
ExecuteNonQuery allows execution of an insert, update or delete statement as well as executing a
schema statement.

The method returns an integral representing the number of affected rows.

1
2
3
4
5
6
7
8
9
10
11
12

using (var cn = dbFactory.CreateConnection ()) {
cn.ConnectionString = connectionString;
cn.Open ();

var cmd = cn.CreateCommand ();

cmd.CommandText = @"Insert Into MyTable (FieldA) Values ('Hello’)";
cmd.CommandType = CommandType.Text;
cmd.Connection = cn;

var count = cmd.ExecuteNonQuery ();
}

DOT NET PROGRAMMING

Command Parameters
Command parameters allow configuring stored procedure parameters as well as parameterized sql
statements which can help protect against SQL injection attacks.

It is strongly advised that any information collected from a user should be sent to the database as
parameter regardless if it is to be persisted or used within a predicate.

Parameters can be added with the Command.Parameters.AddWithValue or by instantiating a
DbParameter class.

The example below shows the former.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

using (var cn = dbFactory.CreateConnection ()) {
cn.ConnectionString = connectionString;
cn.Open ();

var cmd = cn.CreateCommand ();

cmd.CommandText = @"Insert Into MyTable (FieldA) Values (@Hello)";
cmd.CommandType = CommandType.Text;

var param = cmd.CreateParameter ();

param.ParameterName = "@Hello";
param.DbType = DbType.String;
param.Value = "Value";
param.Direction = ParameterDirection.Input;
cmd.Parameters.Add (param);

cmd.Connection = cn;

var count = cmd.ExecuteNonQuery ();

DOT NET PROGRAMMING

}

The DbCommand has a DbType property which allows setting the type of the parameter, it is
vendor agnostic.

SqlCommand and MySqlCommand also provide SqlDbType and MySqlDbType which can be used
to set the type field from a vendor specific enum. Setting the DbType will maintain the vendor
specific column and vice versa.

DOT NET PROGRAMMING

Connection Object and Connection string

Connection Object

1. One of the first ADO.NET objects is the connection object, that allows you to establish a
connection to a data source.

2. The connection objects have the methods for opening and closing connections, for beginning
a transaction of data.

3. The .Net Framework provides two types of connection classes:
The sqlconnection object, that is designed specially to connect to Microsoft SQL Server and
the OleDbConnection object, that is designed to provide connection to a wide range of
databases, such as Microsoft Access and Oracle.

4. A connection is required to interact with the database. A Connection object helps to identify
the database server name, user name and password to connect to the database. The
Connection object is used by commands on the database.

5. A Connection object has the responsibility of establishing a connection with the data store.
6. How to use the Sqlconnection object:

 Instantiate the SqlConnection class.
 Open connection.
 Pass the connection to ADO.NET objects.
 Perform the database operations with ADO.NET object.
 Close the connection.

Connection String

No.
Connection String Parameter
Name

Description

1 Data Source
Identify the server. Could be a local machine, machine domain
name, or IP Address.

2 Initial Catalog Data base name.

3 Integrated Security Set to SSIP to make a connection with the user's window log in.

4 User ID Name of user configured in SQL Server.

5 Password Password matching SQL Server User ID

The connection string is different for each of the various data providers available in .NET 2.0. There
are different connection strings for the various types of data sources. You can find a list of all the
available providers for creating a connection in a table:

No Provider Description

1 System.Data.SqlClient Provides data for Microsoft SQL Server

DOT NET PROGRAMMING

2 System.Data.OleDb Provides data access for data sources exposed using OLE DB

3 System.Data.Odbc Provides data access for data source exposed using ODBC.

4 System.Data.OracleClient Provides data access for Oracle.

 Executing a Stored Procedure

DOT NET PROGRAMMING

A stored procedure is executed by configuring a DbCommand against the name of the stored
procedure along with any required parameters followed by calling ExecuteScalar or ExecuteReader.

ExecuteScalar is used to return a single value. If multiple result sets, rows and columns are returned
it will return the first column from the first row in the first result set.

Parameters can either be input or output.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

using(var cn = dbFactory.CreateConnection())
{
 cn.ConnectionString = connectionString;
 cn.Open();

 var cmd = cn.CreateCommand();
 cmd.CommandText = "spGetFoo";
 cmd.Connection = cn;

 cmd.CommandType = CommandType.StoredProcedure;

// Input param.
 var paramOne = cmd.CreateParameter();
 paramOne.ParameterName = "@inParam";
 paramOne.DbType = DbType.Int32;
 paramOne.Value = 1;
 paramOne.Direction = ParameterDirection.Input;
 cmd.Parameters.Add(paramOne);

// Output param.
 var paramTwo = cmd.CreateParameter();
 paramTwo.ParameterName = "@outParam";
 paramTwo.DbType = DbType.String;
 paramTwo.Size = 10;
 paramTwo.Direction = ParameterDirection.Output;
 cmd.Parameters.Add(paramTwo);

// Execute the stored proc.
var count = cmd.ExecuteScalar();

// Return output param.
var outParam = (int)cmd.Parameters["@outParam"].Value;

// This can be made on the parameter directly
var outParam2 = (int)paramTwo.Value;
}

DOT NET PROGRAMMING

Member name Description

Input The parameter is an input parameter (default).

InputOutput The parameter is capable of both input and output.

Output

The parameter is an output parameter and has be
suffixed with the out keyword in the parameter list
of a stored procedure, built in function or user
defined function.

ReturnValue

The parameter is a return value, scalar or similar
but not a return set. This is determined by the
return keyword in a stored procedure, built in
function or user defined function.

If the stored procedure returns a set and not a single value the ExecuteReader can be used to iterate
over the result:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

using (var cn = dbFactory.CreateConnection ()) {
cn.ConnectionString = connectionString;
cn.Open ();

var cmd = cn.CreateCommand ();
cmd.CommandText = "spGetFoo";
cmd.Connection = cn;

cmd.CommandType = CommandType.StoredProcedure;

using (var dr = cmd.ExecuteReader ()) {
while (dr.NextResult ()) {
while (dr.Read ()) {
}
}
}
}

DOT NET PROGRAMMING

Database Transactions
When the writable transaction of a database involves more than one writable actions, it is essential
that all the actions are wrapped up in a unit of work called a database transaction.ACID

The desired characteristics of a transaction are defined by the term ACID:

Member name Description

Atomicity
All changes within a unit of work complete or
none complete; they are atomic.

Consistency

The state of the data is consistent and valid. If
upon completing all of the changes the data is
considered invalid, all the changes are undone to
return the data to the original state.

Isolation

All changes within a unit of work occur in
isolation from other readable and writable
transactions.

No one can see any changes until all changes have
been completed in full.

Durability
Once all the changes within a unit of work have
completed, all the changes will be persisted.

No one can see any changes until all changes have been completed in full.
Durability
Once all the changes within a unit of work have completed, all the changes will be persisted.

DOT NET PROGRAMMING

Syntax
A transaction is started through the connection object and attached to any command which should
be run in the same transaction.

Commit should be called upon the transaction upon a successful completion while Rollback should
be called if an error occured. This can be achieved by a try catch statement:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using (var cn = dbFactory.CreateConnection ()) {
cn.ConnectionString = connectionString;
cn.Open ();

var cmdOne = cn.CreateCommand ();
cmdOne.CommandText = "spUpdateFoo";
cmdOne.Connection = cn;
cmdOne.CommandType = CommandType.StoredProcedure;

var cmdTwo = cn.CreateCommand ();
cmdTwo.CommandText = "spUpdateMoo";
cmdTwo.Connection = cn;
cmdTwo.CommandType = CommandType.StoredProcedure;

var tran = cn.BeginTransaction ();

try {

cmdOne.Transaction = tran;
cmdTwo.Transaction = tran;

cmdOne.ExecuteNonQuery ();
cmdTwo.ExecuteNonQuery ();

tran.Commit ();
} catch (Exception ex)
 {
 tran.Rollback ();

DOT NET PROGRAMMING

}
}

The DbTransaction class implements IDisposable and can therefore be used within a using
statement rather than a try catch. The Dispose method will be called implicitly upon leaving the
scope of the using statement; this will cause any uncommitted changes to be rolled back while
allowing any committed changes to remain as persisted. This is the preferred syntax for writing
transactions in ADO.NET:

DOT NET PROGRAMMING

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

var connectionDetails =
ConfigurationManager.ConnectionStrings ["MyDatabase"];

var providerName = connectionDetails.ProviderName;
var connectionString = connectionDetails.ConnectionString;

var dbFactory = DbProviderFactories.GetFactory (providerName);

using (var cn = dbFactory.CreateConnection ()) {
cn.ConnectionString = connectionString;
cn.Open ();

var cmdOne = cn.CreateCommand ();
cmdOne.CommandText = "spUpdateFoo";
cmdOne.Connection = cn;
cmdOne.CommandType = CommandType.StoredProcedure;

var cmdTwo = cn.CreateCommand ();
cmdTwo.CommandText = "spUpdateMoo";
cmdTwo.Connection = cn;
cmdTwo.CommandType = CommandType.StoredProcedure;

using (var tran = cn.BeginTransaction ()) {

cmdOne.Transaction = tran;
cmdTwo.Transaction = tran;

cmdOne.ExecuteNonQuery ();
cmdTwo.ExecuteNonQuery ();

tran.Commit ();
{
}
}
}

Working with the Connected Layer of ADO.NET :
The first step to take when working with the OleDb data provider is to establish a

session with the data source using the OleDbConnection type (which, as we recall, implements

the IDbConnection interface). Much like the classic ADO Connection object, OleDbConnection

types are provided with a formatted connection string, containing a number of name/value pairs

separated by semicolons. This information is used to identify the name of the machine we wish

to connect to, required security settings, the name of the database on that machine, and, most

DOT NET PROGRAMMING

importantly, the name of the OLE DB provider. (See online help for a full description of each

name/value pair.)

The connection string may be set using the OleDbConnection.ConnectionString

property or including it as a constructor argument. Assume we wish to connect to the Cars

database on our local machine using the SQL OLE DB provider. The following logic does the

trick:

// Build a connection string.

 OleDbConnection cn = new OleDbConnection();
 cn.ConnectionString = "Provider=SQLOLEDB.1;" + "User ID=sa;
Pwd=;
Initial Catalog=Cars;" + "Data Source=(local);";

As we can conclude from the preceding code comments, the Initial Catalog

name refers to the database we are attempting to establish a session with (Pubs,

Northwind, Cars, and so on). The Data Source name identifies the name of the machine

that maintains the database (for simplicity, I have assumed no specific password is

required for local system administrators). The final point of interest is the Provider

segment, which specifies the name of the OLE DB provider that will be used to access

the data store. Below Table describes some possible values.

// Build
a

connection string.

OleDbConnection cn = new OleDbConnection
(); cn.ConnectionString = "Provider=SQLOLE
DB.1;" + "User ID=sa;Pwd=;Initial Catalog=Ca
rs;" + "Data Source=(local);";
cn.Open();

cn.Close();

In addition to the ConnectionString, Open(), and Close() members, the

OleDbConnection class provides a number of members that let us configure attritional

DOT NET PROGRAMMING

settings regarding our connection, such as timeout settings and transactional

information. Below table gives a partial rundown.

As we can see, the properties of the OleDbConnection type are typically read-only in

nature, and are only useful when we wish to obtain the characteristics of a connection at

runtime. When we wish to override default settings, we must alter the construction string itself.

For example, consider the following code, which changes the default connection timeout setting

from 15 seconds to 30 seconds (via the Connect Timeout segment of the connection string) :

OleDbConnection cn = new OleDbConnection();
cn.ConnectionString = "Provider=SQLOLEDB.1;" + "User ID=sa;Pwd=;Ini
tial Catalog=Cars;" + "Data Source=(local);
cn.Connection Timeout=30";
cn.Open();
Console.WriteLine("***** Info about your connection *****"); Console.W
riteLine("Database location: {0}", cn.DataSource); Console.WriteLine
("Database name: {0}", cn.Database); Console.WriteLine("Provider:
{0}", cn.Provider);
Console.WriteLine("Timeout: {0}", cn.ConnectionTimeout); Console.Writ
eLine("Connection state: {0}", cn.State.ToString());
cn.Close();
Console.WriteLine("Connection state: {0}", cn.State.ToString());

DOT NET PROGRAMMING

Notice that this connection is explicitly opened and closed each time before

making a call to the State property. As mentioned in the previous table, this property

may take any value of the ConnectionState enumeration:

public enum System.Data.ConnectionState
{

Broken, Closed, Co
nnecting, Executing,
Fetching, Open

}

Connecting to an Access Database : Much like classic ADO, the process of connecting to
an Access database using ADO.NET requires little more than retrofitting our construction
string. First, set the Provider segment to the JET engine, rather than SQLOLEDB. Beyond
this adjustment, set the data source segment to point to the path of your *.mdb file, as
shown here:

// Be sure to update the data source segment if necessary!

OleDbConnection cn = new OleDbConnection();
 cn.ConnectionString = "Provider=Microsoft.JET.OLEDB.4.0;" + @"data source = C:\car
s.mdb";
cn.Open();

Once the connection has been made, we can read and manipulate the contents of our data

table.

Command Object

 A Command object executes SQL statements on the database. These SQL statements can be
SELECT, INSERT, UPDATE, or DELETE. It uses a connection object to perform these
actions on the database.

 A Connection object specifies the type of interaction to perform with the database, like
SELECT, INSERT, UPDATE, or DELETE.

 A Command object is used to perform various types of operations, like SELECT, INSERT,
UPDATE, or DELETE on the database.

 SELECT
1. cmd =new SqlCommand("select * from Employee", con);

 INSERT

DOT NET PROGRAMMING

1. cmd = new SqlCommand("INSERT INTO Employee(Emp_ID,
2. Emp_Name)VALUES ('" + aa + "','" + bb + "')", con);

 UPDATE

1. SqlCommand cmd =new SqlCommand("UPDATE Employee SET
2. Emp_ID ='" + aa + "', Emp_Name ='" + bb + "' WHERE
3. Emp_ID = '" + aa + "'", con);

 DELETE

1. cmd =new SqlCommand("DELETE FROM Employee where
2. Emp_ID='" + aa + "'", con);

 A Command object exposes several execute methods like:

1. ExecuteScaler()
Executes the query, and returns the first column of the first row in the result set
returned by the query. Extra columns or rows are ignored.

2. ExecuteReader()
Display all columns and all rows in the client-side environment.
In other words, we can say that they display datatables client-side.

3. ExecuteNonQuery()
Something is done by the database but nothing is returned by the database.

3. Data Reader Object

A DataReader object is used to obtain the results of a SELECT statement from
a command object. For performance reasons, the data returned from a data
reader is a forward-only stream of data. This means that the data can be
accessed from the stream in a sequential manner. This is good for speed, but
if data needs to be manipulated then a dataset is a better object to work with.

Example

1. dr = cmd.ExecuteReader();
2. DataTable dt = new DataTable();
3. dt.Load(dr);

 It is used in Connected architecture.
 Provide better performance.
 DataReader Object has Read-only access.
 DataReader Object Supports a single table based on a single SQL query of one database.
 While DataReader Object is Bind to a single control.
 DataReader Object has Faster access to data.
 DataReader Object Must be manually coded.
 we can't create a relation in the data reader.
 whereas Data reader doesn't support.
 The data reader communicates with the command object.
 DataReader can not modify data.

4. Data Adapter Object

DOT NET PROGRAMMING

 A Data Adapter represents a set of data commands and a database connection to fill the
dataset and update a SQL Server database.

 A Data Adapter contains a set of data commands and a database connection to fill the dataset
and update a SQL Server database. Data Adapters form the bridge between a data source and
a dataset.

 Data Adapters are designed depending on the specific data source. The following table
shows the Data Adapter classes with their data source.

Provider-Specific Data Adapter classes Data Source
SqlDataAdapter SQL Server
OledbDataAdapter OLE DB provider
OdbcDataAdapter ODBC driver
OracleDataAdapter Oracle

Provider-Specific Data Adapter classes

Data Source

 A Data Adapter object accesses data in a disconnected mode. Its object contains a reference
to a connection object.

 It is designed in a way that implicitly opens and closes the connection whenever required.
 It maintains the data in a DataSet object. The user can read the data if required from the

dataset and write back the changes in a single batch to the database. Additionally, the Data
Adapter contains a command object reference for SELECT, INSERT, UPDATE, and
DELETE operations on the data objects and a data source.

 A Data Adapter supports mainly the following two methods:

o Fill ()
The Fill method populates a dataset or a data table object with data from the
database. It retrieves rows from the data source using the SELECT statement
specified by an associated select command property.
The Fill method leaves the connection in the same state as it encountered it before
populating the data. If subsequent calls to the method for refreshing the data are
required then the primary key information should be present.

o Update ()
The Update method commits the changes back to the database. It also analyzes the
RowState of each record in the DataSet and calls the appriopriate INSERT,
UPDATE, and DELETE statements.
A Data Adapter object is formed between a disconnected ADO.NET object and a
data source.

Example

1. SqlDataAdapter da=new SqlDataAdapter("Select * from Employee", con);
2. da.Fill(ds,"Emp");
3. bldr =new SqlCommandBuilder(da);
4. dataGridView1.DataSource = ds.Tables["Emp"];

DOT NET PROGRAMMING

5. DataSet Object

 In the disconnected scenario, the data retrieved from the database is stored in a local buffer
called DataSet. It is explicitly designed to access data from any data source. This class is
defined in the System.Data namespace.

 A Data Set object is an in-memory representation of the data. It is specially designed to
manage data in memory and to support disconnected operations on data.

 A Data Set is a collection of DataTable and DataRelations. Each DataTable is a collection of
DataColumn, DataRows, and Constraints.

DOT NET PROGRAMMING

 A DataTable, DataColumn, and DataRows could be created as follows.

Example

1. DataTable dt = new DataTable();
2. DataColumn col =new DataColumn();
3. Dt.columns.Add(col2);
4. DataRow row = dt.newRow();

 It is used in a disconnected architecture.
 Provides lower performance.
 A DataSet object has read/write access.
 A DataSet object supports multiple tables from various databases.
 A DataSet object is bound to multiple controls.
 A DataSet object has slower access to data.
 A DataSet object is supported by Visual Studio tools.
 We can create relations in a dataset.
 A Dataset supports integration with XML.
 A DataSet communicates with the Data Adapter only.
 A DataSet can modify data.

6. Command Builder Object

 Automatically generates insert, update, delete queries using the SelectCommand property of
a DataAdapter.

 A Command Builder Object is used to build commands for data modification from objects
based on a single table query. CommandBuilders are designed depending on the specific
data source. The following table shows the CommandBuilder classes with their data source.

Provider-Specific Data Adapter classes Data Source
SqlDataAdapter SQL Server

DOT NET PROGRAMMING

OledbDataAdapter OLE DB provider
OdbcDataAdapter ODBC driver
OracleDataAdapter Oracle

Example

1. da = new SqlDataAdapter("Select * from Employee", con);
2. ds = new DataSet();
3. da.MissingSchemaAction = MissingSchemaAction.AddWithKey;
4. da.Fill(ds, "Emp");
5. bldr = new SqlCommandBuilder(da);
6. dataGridView1.DataSource = ds.Tables["Emp"];

 Differences Between DataReader and DataSet

N
o

Data Reader DataSet

1 Used in a connected architecture used in a disconnected architecture
2 Provides better performance Provides lower performance

3
DataReader object has read-only
access

A DataSet object has read/write
access

4
DataReader object supports a single
table based on a single SQL query of
one database

A DataSet object supports multiple
tables from various databases

5
A DataReader object is bound to a
single control

A DataSet object is bound to multiple
controls

6
A DataReader object has faster
access to data

A DataSet object has slower access
to data

7
A DataReader object must be
manually coded

A DataSet object is supported by
Visual Studio tools

8
We can't create a relation in a data
reader

We can create relations in a dataset

9
Whereas a DataReader doesn't
support data reader communicates
with the command object.

A Dataset supports integration with
XML Dataset communicates with the
Data Adapter only

1
0

DataReader cannot modify data A DataSet can modify data

 DataView Object

 A DataView is the same as a read-only mini-dataset.

 You typically load only a subset into a DataView.
 A DataView provides a dynamic view of data. It provides a datarow using the DataView.

DOT NET PROGRAMMING

Example

Add two buttons and a DataGridView control. Change the text of the first
button to sort by city and that of button2 to only select records in Mexico and
add the code in form.cs.

Form Design

Coding Part

1. SqlConnection con;
2. SqlCommand cmd;
3. SqlDataReader dr;
4. public DataTable GetTable()
5. {
6. con = new SqlConnection("Data Source=.\\sqlexpress;Initial

Catalog=information;Integrated Security=True;Pooling=False");
7. con.Open();
8. cmd = new SqlCommand("select * from Customers", con);
9. dr = cmd.ExecuteReader();
10. DataTable dt = new DataTable();
11. dt.Load(dr);
12. dataGridView1.DataSource = dt;
13. con.Close();
14. return dt;
15. }

DOT NET PROGRAMMING

Form1_Load

1. dataGridView1.DataSource = GetTable().DefaultView;

ShortByCity_Click

1. DataView dv = new DataView(GetTable());
2. dv.Sort = "City ASC";
3. dataGridView1.DataSource = dv;

OnlyInMexico_Click

1. DataView dv = new DataView(GetTable());
2. dv.RowFilter = "Country = 'Mexico'";
3. dataGridView1.DataSource = dv;

 At the click of the sort by city button, the data already in the DataGridView control is sotred
dy city.

 On clicking the second button, only the records in Mexico are displayed in the
DataGridView control. The output after clicking the only in Mexico button is as the Mexico
button.

Inserting, Updating, and Deleting Records Using
OleDbCommand :

The ExecuteReader() method allows us to examine the results of a SQL SELECT

statement using a forward-only, read-only flow of information. However, when we wish to

submit SQL commands that result in the modification of a given table, we make use of the

OleDbCommand.ExecuteNonQuery() method. This single method will perform inserts, updates,

and deletes based on the format of our command text. Be very aware that when we are making

use of the OleDbCommand.ExecuteNonQuery() method, we are operating within the connected

layer of ADO.NET, meaning this method has nothing to do with obtaining populated DataSet

types via a data adapter.

To illustrate modifying a data source via ExecuteNonQuery(), assume we wish to insert a

new record into the Inventory table of the Cars database. Once we have configured our connection

type, the remainder of our task is as simple as authoring the correct SQL:

class UpdateWithCommandObj
{
static void Main(string[] args)
{
// Open a connection to Cars
db. OleDbConnection cn = new OleDbConnection();

DOT NET PROGRAMMING

cn.ConnectionString = "Provider=SQLOLEDB.1;" + "User ID=sa;Pwd=;Initial C
atalog=Cars;" + "Data Source=(local);
Connect Timeout=30";
cn.Open();

// SQL INSERT statement.
string sql = "INSERT INTO Inventory" + "(CarID, Make, Color, PetName) VAL
UES" + "('777', 'Honda', 'Silver', 'NoiseMaker')";

// Insert the record.
OleDbCommand cmd = new OleDbCommand(sql, cn);
 try
{

cmd.ExecuteNonQuery();
} catch(Exception ex)
{

Console.WriteLine(ex.Message); }
cn.Close();

}
}

DOT NET PROGRAMMING

Updating or removing a record :

// UPDATE existing record.
sql = "UPDATE Inventory SET Make = 'Hummer' WHERE CarID = '777'";

 cmd.CommandText = sql;

try
{

cmd.ExecuteNonQuery();
}
catch(Exception ex)
{

Console.WriteLine(ex.Message);
}

// DELETE a record.
sql = "Delete from Inventory where CarID = '777'";
cmd.CommandText = sql;
try
{

cmd.ExecuteNonQuery();
}
 catch(Exception ex)
{

Console.WriteLine(ex.Message);

}

Although you do not bother to obtain the value returned from
the ExecuteNonQuery() method, do understand

DOT NET PROGRAMMING

that this member returns a System.Int32 that represents the number of affected rec
ords:

try

{
Console.WriteLine("Number of rows effected: {0}", cmd.ExecuteNonQuery());
}

Working With System.Data.SqlClient and System.Data.Oledb

Design a Simple Winform for accepting the details of an Employee. Using the
connected architecture of ADO.NET, perform the following operations:

 Insert record.
 Search record.
 Update record.
 Delete record.

Form Design

Coding Part

Step 1: add namespace using System.Data.Oledb; for access Database.

Step 2: Create connection object.

1. OleDbConnection con;
2. OleDbCommand cmd;

DOT NET PROGRAMMING

3. OleDbDataReader dr;

Step 3: Form1_Load

1. con = new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\\
Documents and Settings\\Admin\\Desktop\\Ado Connected Demo\\db1.mdb");

2. private void display()
3. con.Open();
4. cmd = new OleDbCommand("select * from Employee",con);
5. dr = cmd.ExecuteReader();
6. DataTable dt = new DataTable();
7. dt.Load(dr);
8. dataGridView1.DataSource = dt;
9. con.Close();

Display_Click

1. display();

Insert_Click

1. con.Open();
2. int aa = Convert.ToInt32(textBox1.Text);
3. string bb = textBox2.Text;
4. int cc = Convert.ToInt32(textBox3.Text);
5. cmd = new OleDbCommand("INSERT INTO Employee(Emp_ID, Emp_Name,Salar

y) VALUES ('" + aa + "','" + bb + "','" + cc + "')", con);
6. cmd.ExecuteNonQuery();
7. MessageBox.Show("one record inserted:");
8. con.Close();
9. display();

Delete_Click

1. con.Open();
2. int aa = Convert.ToInt32(textBox1.Text);
3. cmd = new OleDbCommand("DELETE FROM Employee where Emp_ID='" + aa +

"'", con);
4. cmd.ExecuteNonQuery();
5. MessageBox.Show("one record Delete:");
6. con.Close();
7. display();

DOT NET PROGRAMMING

update_Click

1. con.Open();
2. int aa = Convert.ToInt32(textBox1.Text);
3. string bb = textBox2.Text;
4. int cc = Convert.ToInt32(textBox3.Text);
5. string abc = "UPDATE Employee SET Emp_ID ='" + aa + "', Emp_Name ='" + bb +

"', Salary ='" + cc + "' WHERE Emp_ID = '" + aa + "'";
6. OleDbCommand cmd = new OleDbCommand(abc, con);
7. cmd.ExecuteNonQuery();
8. MessageBox.Show("one record updated:");
9. con.Close();
10. display();

Find_Click

1. con.Open();
2. int aa = Convert.ToInt32(textBox1.Text);
3. string abc = "SELECT Emp_ID,Emp_Name,Salary FROM Employee where Emp_ID

='" + aa + "'";
4. cmd = new OleDbCommand(abc, con);
5. MessageBox.Show("one record search:");
6. dr = cmd.ExecuteReader();
7. DataTable dt = new DataTable();
8. dt.Load(dr);
9. dataGridView1.DataSource = dt;
10. con.Close();

Exit_Click

Application.Exit();

Program: Design a simple Winform for accepting the details of an Employee. Using the disc
onnected architecture of ADO.NET, perform the following operations.

 Insert record.
 Display record.
 Update record.
 Delete record

Form Design

DOT NET PROGRAMMING

Coding Part

Step 1: add namespace using System.Data.SqlClient;for SQL dataBase.

Step 2: Create connection object.

1. DataSet ds;
2. SqlDataAdapter da;
3. SqlConnection con;
4. SqlCommandBuilder bldr;

Step 3: Form1_Load

1. con = new SqlConnection("Data Source=.\\sqlexpress;Initial Catalog=information;Int
egratedSecurity=True;Pooling=False");

2. private void display()
3. da = new SqlDataAdapter("Select * from Employee", con);
4. ds = new DataSet();
5. da.MissingSchemaAction = MissingSchemaAction.AddWithKey;
6. da.Fill(ds, "Emp");
7. bldr = new SqlCommandBuilder(da);
8. dataGridView1.DataSource = ds.Tables["Emp"];

Display_Click

1. display();

DOT NET PROGRAMMING

Insert_Click

1. DataRow drnew = ds.Tables["Emp"].NewRow();
2. drnew[0] = textBox1.Text;
3. drnew[1] = textBox2.Text;
4. drnew[2] = textBox3.Text;
5. ds.Tables["Emp"].Rows.Add(drnew);
6. da.Update(ds, "Emp");
7. MessageBox.Show("Record added");
8. dataGridView1.DataSource = ds.Tables["Emp"];

Delete_Click

1. DataRow row = ds.Tables["Emp"].Rows.Find(Convert.ToInt32(textBox1.Text));
2. row.Delete();
3. da.Update(ds, "Emp");
4. MessageBox.Show("Record Deleted");
5. dataGridView1.DataSource = ds.Tables["Emp"];

Update_Click

1. DataRow dr = ds.Tables[0].Rows.Find(textBox1.Text);
2. dr["Emp_Name"] = textBox2.Text;
3. dr["Salary"] = textBox3.Text;
4. da.Update(ds, "Emp");
5. MessageBox.Show("updated..");
6. dataGridView1.DataSource = ds.Tables[0];

FirstRcd_Click

1. this.BindingContext[ds.Tables[0]].Position = 0;

LastRcd_Click

1. this.BindingContext[ds.Tables[0]].Position = ds.Tables[0].Rows.Count - 1;

NextRcd_Click

1. if (this.BindingContext[ds.Tables[0]].Position > 0)
2. {
3. this.BindingContext[ds.Tables[0]].Position -= 1;
4. }

DOT NET PROGRAMMING

PreviousRcd_Click

1. if (this.BindingContext[ds.Tables[0]].Position < ds.Tables[0].Rows.Count - 1)
2. {
3. this.BindingContext[ds.Tables[0]].Position += 1;
4. }

--

This example shows how to insert ,update, delete and select data in Access File(CRUD Operations).

 Then, we can use System.Data API.
 The database in the sample file contains a table that has a name “TABLE1”.

TABLE1:

ID NAME SURNAME
1 Jack Sparrow
Select Command Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

string mdfFile = @"csharpexamples.mdb";

using (OleDbConnection connection = new OleDbConnection(string.Format("Provider
=Microsoft.Jet.OLEDB.4.0;Data Source={0}", mdfFile)))
{
 using (OleDbCommand selectCommand = new OleDbCommand("SELECT TOP
10 * FROM TABLE1", connection))
 {
 connection.Open();

 DataTable table = new DataTable();
 OleDbDataAdapter adapter = new OleDbDataAdapter();
 adapter.SelectCommand = selectCommand;
 adapter.Fill(table);

 foreach (DataRow row in table.Rows)
 {
 object nameValue = row["NAME"];
 object surnameValue = row["SURNAME"];
 }
 }
}

DOT NET PROGRAMMING

Insert Command Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

string mdfFile = @"csharpexamples.mdb";

using (OleDbConnection connection = new OleDbConnection(string.Format("Provider
=Microsoft.Jet.OLEDB.4.0;Data Source={0}", mdfFile)))
{
 using (OleDbCommand insertCommand = new OleDbCommand("INSERT INTO
TABLE1 ([NAME],[SURNAME]) VALUES (?,?)", connection))
 {
 connection.Open();

 insertCommand.Parameters.AddWithValue("@NAME", "Brad");
 insertCommand.Parameters.AddWithValue("@SURNAME", "Pitt");

 insertCommand.ExecuteNonQuery();
 }
}

Update Command Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

string mdfFile = @"csharpexamples.mdb";

using (OleDbConnection connection = new OleDbConnection(string.Format("Provider
=Microsoft.Jet.OLEDB.4.0;Data Source={0}", mdfFile)))
{
 using (OleDbCommand updateCommand = new OleDbCommand("UPDATE TA
BLE1 SET [NAME] = ?, [SURNAME] = ? WHERE [ID] = ?", connection))
 {
 connection.Open();

 updateCommand.Parameters.AddWithValue("@NAME", "Brad2");
 updateCommand.Parameters.AddWithValue("@SURNAME", "Pitt2");
 updateCommand.Parameters.AddWithValue("@ID", 2);

 updateCommand.ExecuteNonQuery();
 }
}

DOT NET PROGRAMMING

Delete Command Example:

1
2
3
4
5
6
7
8
9
10
11
12
13

string mdfFile = @"csharpexamples.mdb";

using (OleDbConnection connection = new OleDbConnection(string.Format("Provider
=Microsoft.Jet.OLEDB.4.0;Data Source={0}", mdfFile)))
{
 using (OleDbCommand deleteCommand = new OleDbCommand("DELETE FRO
M TABLE1 WHERE [ID] = ?", connection))
 {
 connection.Open();

 deleteCommand.Parameters.AddWithValue("@ID", 2);

 deleteCommand.ExecuteNonQuery();
 }
}

DOT NET PROGRAMMING

	​ ADO.NET Architecture
	​ Selecting a Data Provider :
	​ // Using the OleDb data provider.
	​ The Types of the System.Data.OleDb Namespace :
	​ Selecting a Data Provider :
	​ // Using the OleDb data provider.
	​ The Types of the System.Data.OleDb Namespace :
	​ The Role of ADO.NET Data Providers :
	​ IDbDataParameter extends the IDataParameter interface to obtain the following additional behaviors :

	​ ADO.NET
	​ Various Connection Architectures
	​ Understanding ADO.NET and it's class library
	​ Important Classes in ADO.NET
	​ 1. Connection Class
	​ 2. Command Class
	​ 3. DataReader Class
	​ 4. DataAdapter Class
	​ 5. DataSet Class

	​ Command Objects
	​ DataReader
	​ Multiple Results
	​ DataSet

	​ ExecuteNonQuery
	​ Command Parameters
	​ Connection Object and Connection string

	​ Database Transactions
	​ Syntax
	​ Working with the Connected Layer of ADO.NET :
	​ ----
	​ Command Object
	​ 3. Data Reader Object
	​ 4. Data Adapter Object
	​ 5. DataSet Object
	​ 6. Command Builder Object

	​ Differences Between DataReader and DataSet
	​ DataView Object
	​ Inserting, Updating, and Deleting Records Using OleDbCommand :
	​ // SQL INSERT statement.
	​ // Insert the record.
	​ Updating or removing a record :

	​ // DELETE a record.
	​ Working With System.Data.SqlClient and System.Data.Oledb

