
DOT NET PROGRAMMING

DOT NET PROGRAMMING

CHAPTER - 3 : Exception & object life time and Interface and Collections

SESSION – 22 : The Basics of Object Life Time, The Role of Application
Roots ,Understanding Object Generations,

 The Basics of Object Life Time

Object lifetime is the time when a block of memory is allocated to this object
during some process of execution and that block of memory is released when
the process ends. Once the object is allocated with memory, it is necessary to
release that memory so that it is used for further processing, otherwise, it
would result in memory leaks. We have a class in .Net that releases memory
automatically for us when the object is no longer used. We will try to
understand the entire scenario thoroughly of how objects are created and
allocated memory and then deallocated when the object is out of scope.

The class is a blueprint that describes how an instance of this type will look
and feel in memory. This instance is the object of that class type. A block of
memory is allocated when the new keyword is used to instantiate the new
object and the constructor is called. This block of memory is big enough to
hold the object. When we declare a class variable it is allocated on the stack
and the time it hits a new keyword and then it is allocated on the heap. In
other words, when an object of a class is created it is allocated on the heap
with the C# new keyword operator. However, a new keyword returns a
reference to the object on the heap, not the actual object itself. This reference
variable is stored on the stack for further use in applications.

When the new operator is used to create an object, memory is taken from the
managed heap for this object and the managed heap is more than just a

DOT NET PROGRAMMING

random chunk of memory accessed by the CLR. When the object is no longer
used then it is de-allocated from the memory so that this memory can be
reused.

The key pillar of the .NET Framework is the automatic garbage collection that
manages memory for all .NET applications. When an object is instantiated the
garbage collector will destroy the object when it is no longer needed. There is
no explicit memory deallocation since the garbage collector monitors unused
objects and does a collection to free up memory that is an automatic process.
The Garbage Collector removes objects from the heap when they are
unreachable by any part of your codebase. The .Net garbage collector will
compact empty blocks of memory for the purpose of optimization.

The heap is categorized into three generations so it can handle long-lived and
short-lived objects. Garbage collection primarily occurs with the reclamation
of short-lived objects that typically occupy only a small part of the heap.

Generations

There are the following three generations of objects on the heap:

 Generation 0: Newly created objects are in Generation 0. These objects on
Generation 0 are collected frequently to ensure that short-lived objects are quickly
collected and the memory is released. Objects that survive Generation 0, the
collections are promoted to Generation 1. Most objects are reclaimed for garbage
collection in Generation 0 and do not survive to the next generation.

 Generation 1: Objects that are collected less frequently than Generation 0 and
contains longer-lived objects that were promoted from Generation 0. Objects that
survive Generation 1, collection are promoted to Generation 2.

 Generation 2: Objects promoted from Generation 1 that are the longest-lived objects
and collected infrequently. The overall strategy of the garbage collector is to collect and
move longer-lived objects less frequently.

DOT NET PROGRAMMING

The garbage collector cleans up managed resources automatically since the
managed code is directly targeted by the CLR. But when the object uses
unmanaged resources like database connections or file manipulation, that
needs to be released manually and this can be done by a finalize method.

We use the destructor method using the (~) sign in our code to destroy the
objects and this destructor is converted into a finalize method (check in the
compiled code). This is known as a finalization process. If we are
implementing Finalize(), we do not have control since when this method
should be called the garbage collector takes care of this on its own. In the
finalization process, there are two collection cycles to completely release the
object's memory. During the first collection pass, the object is flagged for
finalization. After the finalization occurs, the garbage collector can reclaim
the object's memory and the memory is released.

There is another method, Dispose(), that releases managed and unmanaged
resources explicitly. This method is the single method in an IDisposable
interface and can be used to release unmanaged resources manually.

I have written another article on the IDisposable pattern in which we would
have a clear picture of the difference between Finalize() and Dispose ().

--

DOT NET PROGRAMMING

The Role of Application Roots

 how the garbage collector determines when an object is no longer needed. To understand the
details, you need to be aware of the notion of application roots. Simply put, a root is a storage
location containing a reference to an object on the managed heap. Strictly speaking, a root can fall
into any of the following categories:

 References to global objects (though these are not allowed in C#, CIL code does permit
allocation of global objects)

 References to any static objects/static fields
 References to local objects within an application’s code base
 References to object parameters passed into a method
 References to objects waiting to be finalized
 Any CPU register that references an object

During a garbage collection process, the runtime will investigate objects on the managed heap to
determine whether they are still reachable (i.e., rooted) by the application. To do so, the CLR will
build an object graph, which represents each reachable object on the heap.
 Note that the garbage collector will never graph the same object twice, thus avoiding the nasty
circular reference count found in COM programming.

Assume the managed heap contains a set of objects named A, B, C, D, E, F, and G. During a
garbage collection, these objects (as well as any internal object references they may contain) are
examined for active roots. After the graph has been constructed, unreachable objects (which you
canassume are objects C and F) are marked as garbage. Figure ,diagrams a possible object graph for

the scenario just described
Figure , Object graphs are constructed to determine which objects are reachable by application roots
After objects have been marked for termination (C and F in this case—as they are not accounted for
in the object graph), they are swept from memory. At this point, the remaining space on the heap is
compacted, which in turn causes the CLR to modify the set of active application roots (and the
underlying pointers) to refer to the correct memory location (this is done automatically and
transparently). Last but not least, the next object pointer is readjusted to point to the next available
slot. Figure illustrates the resulting readjustment.

Figure , A clean and compacted heapNote Strictly speaking, the garbage collector uses two distinct
heaps, one of which is specificallyused to store large objects. This heap is less frequently consulted

DOT NET PROGRAMMING

during the collection cycle, given possible performance penalties involved with relocating large
objects. Regardless, it is safe to consider the managed heap as a single region of memory.

DOT NET PROGRAMMING

Understanding Object Generations

When the CLR is attempting to locate unreachable objects, it does not literally examine every object
placed on the managed heap. Doing so, obviously, would involve considerable time, especially in
larger (i.e., real-world) applications.

To help optimize the process, each object on the heap is assigned to a specific “generation.” The
idea behind generations is simple: the longer an object has existed on the heap, the more likely it is
to stay there. For example, the class that defined the main window of a desktop application will be
in memory until the program terminates. Conversely, objects that have only recently been placed on
the heap (such as an object allocated within a method scope) are likely to be unreachable rather
quickly.

Given these assumptions, each object on the heap belongs to one of the following generations:

Generation 0: Identifies a newly allocated object that has never been marked for

collection

Generation 1: Identifies an object that has survived a garbage collection (i.e., it was marked for
collection but was not removed because the sufficient heap spacewas acquired)

Generation 2: Identifies an object that has survived more than one sweep of the garbage collector

 The garbage collector will investigate all generation 0 objects first. If marking and sweeping
(or said more plainly, getting rid of) these objects results in the required amount of free memory,
any surviving objects are promoted to generation 1. To see how an object’s generation affects the
collection process, ponder

 in Figure , which diagrams how a set of surviving generation 0 objects (A, B, and E) are promoted
once the required memory has been reclaimed.

DOT NET PROGRAMMING

Figure 13-5. Generation 0 objects that survive a garbage collection are promoted to generation 1If
all generation 0 objects have been evaluated but additional memory is still required, generation

1 objects are then investigated for reachability and collected accordingly. Surviving generation 1

objects are then promoted to generation 2. If the garbage collector still requires additional memory,

generation 2 objects are evaluated. At this point, if a generation 2 object survives a garbage

collection, it remains a generation 2 object, given the predefined upper limit of object generations.

The bottom line is that by assigning a generational value to objects on the heap, newer objects (such
as local variables) will be removed quickly, while older objects (such as a program’s main window)
are not “bothered” as ofte

The Role of .NET Exception hanlding

Prior to .NET, error handling under the windows operating system was a
confused mishmash of techniques. Many Programmers rolled their own error
handling logic within the context of a given application. For example, a
development team may define a set of numerical constants that represent
known error conditions, and make use of them as return values. In addition to
a developer’s ad-hoc techniques, the Windows API defines hundreds of error
codes that comes by the way of various methods and techniques.

The obvious problem with these techniques is lack of symmetry. Each
approach is more or less tailored to a given technology, a given language, and
perhaps even a given project. In order to put up an end, .NET platform
provides a standard technique to send and trap run time errors: Structured
Exception Handling [SEH].
The beauty of this approach is that developers now have a unified approach to
error handling, which is common to all languages targeting the .NET
Universe, As an added bonus, the syntax used to throw and catch exceptions
across assemblies and machine boundaries is identical. Another bonus of .NET
exceptions is that fact that rather than receiving a cryptic numerical value
that identifies the problem at hand, exception are objects that contain a
human readable descriptions

DOT NET PROGRAMMING

The System.Exception Base Class

All user- and system-defined exceptions ultimately derive from the
System.Exception base class (which in turn derives from System.Object). Note
that some of these members are virtual and may thus be overridden by
derived types:

public class Exception : ISerializable, _Exception {

public virtual IDictionary Data { get; }
protected Exception(SerializationInfo info, StreamingContext context);
public Exception(string message, Exception innerException);
public Exception(string message);
public Exception();

public virtual Exception GetBaseException();
public virtual void GetObjectData(SerializationInfo info, StreamingContext context); public System.
Type GetType();
protected int HResult { get; set; }
public virtual string HelpLink { get; set; }
public System.Exception InnerException { get; }
 public virtual string Message { get; }
public virtual string Source { get; set; }
public virtual string StackTrace { get; }
 public MethodBase TargetSite { get; }
 public override string ToString(); }

Core Members of the System.Exception Type
System.Exception
Property

Meaning in Life

Data Data This read-only property retrieves a collection of key/value pairs
(represented by an object implementing IDictionary) that provide
additional, programmer-defined information about the exception. By
default, this collection is empty.

HelpLink This property gets or sets a URL to a help file or web site describing
the error in full deta

InnerException This read-only property can be used to obtain information about the
previous exception(s) that
caused the current exception to occur. The previous exception(s) are
recorded by passing them into the constructor of the most current
exception.

Message This read-only property returns the textual description of a given
error. The error message itself is set as a constructor parameter.

DOT NET PROGRAMMING

Source This property gets or sets the name of the assembly, or the object,
that threw the current exception.

StackTrace This read-only property contains a string that identifies the sequence
of calls that triggered the
exception. As you might guess, this property is useful during
debugging or if you want to dump the error to an external error log.

TargetSite This read-only property returns a MethodBase object, which
describes numerous details about the method that threw the exception
(invoking ToString() will identify the method by name)

Properties of the Exception Class: The Exception class has many properties which help the user
to get information about the exception during the exception.

 Message: This property helps to provide the details about the main cause of the exception
occurrence.

 InnerException: This property helps to provide the information about the series of
exceptions that might have occurred.

 Data: This property helps to get the information about the arbitrary data which is held by
the property in the key-value pairs.

 The Data property of System.Exception allows you to fill an exception object with relevant
 auxiliary information (such as a timestamp).
 The Data property returns an object implementing an interface named IDictionary, defined

in the System.Collections namespace

 TargetSite: This property helps to get the name of the method where the exception will
throw.

o The System.Exception.TargetSite property allows you to determine various details
about the method that threw a given exception. As shown in the previous Main()
method, printing the value of TargetSite will display the return type, name, and
parameter types of the method that threw the exception. However, TargetSite does
not return just a vanilla-flavored string but rather a strongly typed
System.Reflection.MethodBase object. This type can be used to gather numerous
details regarding the offending method, as well as the class that defines the offending
method.

 HelpLink: This property helps to hold the URL for a particular exception.

 While the TargetSite and StackTrace properties allow programmers to gain an understanding
 of a given exception, this information is of little use to the end user. As you have already

seen, the System.Exception.Message property can be used to obtain human-readable
information that can be displayed to the current user. In addition, the HelpLink property can
be set to point the user to a specific URL or standard Windows help file that contains more

DOT NET PROGRAMMING

detailed information. By default, the value managed by the HelpLink property is an empty
string.

 StackTrace: This property helps to provide the information about where the error occurred.
 The System.Exception.StackTrace property allows you to identify the series of calls that
 resulted in the exception. Be aware that you never set the value of StackTrace, as it is

established automatically at the time the exception is created.

Exception Hierarchy

In C#, all the exceptions are derived from the base class Exception which gets further divided into
two branches as ApplicationException and another one is SystemException. SystemException is a
base class for all CLR or program code generated errors. ApplicationException is a base class for all
application related exceptions. All the exception classes are directly or indirectly derived from the
Exception class. In case of ApplicationException, the user may create its own exception types and
classes. But SystemException contains all the known exception types such as
DivideByZeroException or NullReferenceException etc

.

Different Exception Classes: There are different kinds of exceptions which can be generated in C#
program:

 Divide By Zero exception: It occurs when the user attempts to divide by zero
 Out of Memory exceptions: It occurs when then the program tries to use excessive memory
 Index out of bound Exception: Accessing the array element or index which is not present

in it.
 Stackoverflow Exception: Mainly caused due to infinite recursion process

 Null Reference Exception : Occurs when the user attempts to reference an object
which is of NULL type.

DOT NET PROGRAMMING

 Exceptions

 Exceptions in the application must be handled to prevent crashing of the program and unexpected
result, log exceptions and continue with other functionalities. C# provides built-in support to handle
the exception using try, catch & finally blocks.

Syntax:
try
{
 // put the code here that may raise exceptions
}
catch
{
 // handle exception here
}
finally
{
 // final cleanup code
}

try block: Any suspected code that may raise exceptions should be put inside a try{ } block.
During the execution, if an exception occurs, the flow of the control jumps to the first matching
catch block.

catch block: The catch block is an exception handler block where you can perform some action
such as logging and auditing an exception. The catch block takes a parameter of an exception type
using which you can get the details of an exception.

finally block: The finally block will always be executed whether an exception raised or not.
Usually, a finally block should be used to release resources, e.g., to close any stream or file
objects that were opened in the try block.

The following may throw an exception if you enter a non-numeric character.

DOT NET PROGRAMMING

Example: C# Program
class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Enter a number: ");

 var num = int.Parse(Console.ReadLine());

 Console.WriteLine($"Squre of {num} is {num * num}");
 }
}

To handle the possible exceptions in the above example, wrap the code inside a try block and
handle the exception in the catch block, as shown below.

Example: Exception handling using try-catch blocks
class Program
{
 static void Main(string[] args)
 {
 try
 {
 Console.WriteLine("Enter a number: ");

 var num = int.parse(Console.ReadLine());

 Console.WriteLine($"Squre of {num} is {num * num}");
 }
 catch
 {
 Console.Write("Error occurred.");
 }
 finally
 {
 Console.Write("Re-try with a different number.");
 }
 }
}

--

DOT NET PROGRAMMING

Throwing a Generic Exception
The current implementation of Accelerate() displays an error message if the
caller attempts to speed up the Car beyond its upper limit. To retrofit this
method to throw an exception if the user attempts to speed up the automobile
after it has met its maker, you want to create and configure a new instance of
the System.Exception class, setting the value of the read-only Message
property via the class constructor. When you wish to send the error object
back to the caller, make use of the C# throw keyword. Here is the relevant
code update to the Accelerate() method:

 public void Accelerate(int delta)
 {
 if (carIsDead)

 Console.WriteLine("{0} is out of order...", petName);
else

{
currSpeed += delta;
if (currSpeed >= maxSpeed)

{
carIsDead = true;
 currSpeed = 0;
// Use "throw" keyword to raise an exception.
throw new Exception(string.Format("{0} has overheated!", petName));
}

 else
Console.WriteLine("=> CurrSpeed = {0}", currSpeed);
}

}
First of all, when you are throwing an exception, it is always up to you to
decide exactly what constitutes the error in question, and when it should be
thrown. Here, you are making the assumption that if the program attempts to
increase the speed of a car that has expired, a System.Exception type should
be thrown to indicate the Accelerate() method cannot continue. Alternatively,
you could implement Accelerate() to recover automatically without needing to
throw an exception in the first place. By and large, exceptions should be
thrown only when a more terminal condition has been met Deciding exactly
what constitutes throwing an exception is a design issue you must always
contend with.

https://slideplayer.com/slide/8182248/25/images/11/Throwing+a+Generic+Exception.jpg

DOT NET PROGRAMMING

Catching Exceptions

In .NET from a Java background, understand that type members are not
prototyped with the set of exceptions they may throw (in other words, .NET
does not support checked exceptions). its not required to handle every
exception thrown from a given member.

Because the Accelerate() method now throws an exception, the caller needs to
be ready to handle the exception, should it occur. When you are invoking a
method that may throw an exception, you make use of a try/catch block. After
you have caught the exception object, you are able to invoke the members of
the exception object to extract the details of the problem. What you do with
this data is largely up to you. You might want to log this information to a
report file, write the data to the Windows event log, e-mail a system
administrator, or display the problem to the end user. Here, as to dump the
contents to the console window:
--
// Handle the thrown exception.
static void Main(string[] args)
{

Console.WriteLine("***** Simple Exception Example *****");
Console.WriteLine("=> Creating a car and stepping on it!");
Car myCar = new Car("Zippy", 20);
myCar.CrankTunes(true);
// Speed up past the car’s max speed to
// trigger the exception.

try
{

for(int i = 0; i < 10; i++)
myCar. Accelerate(10);

}
catch(Exception e)
{

Console.WriteLine("\n*** Error! ***");
Console.WriteLine("Method: {0}", e.TargetSite);Console.WriteLine("Message: {0}", e

Message);
Console.WriteLine("Source: {0}", e.Source);

}
// The error has been handled, processing continues with the next
statement.
Console.WriteLine("\n***** Out of exception logic *****");
Console.ReadLine();

}

DOT NET PROGRAMMING

As you can see, after an exception has been handled, the application is free to
continue on from the point after the catch block. In some circumstances, a
given exception could be critical enough to warrant the termination of the
application. However, in a good number of cases, the logic within the
exception handler will ensure the application can continue on its merry way
(although it could be slightly less functional, such as not being able to connect
to a remote data source).

Finally Block
A try/catch scope may also define an optional finally block. The purpose of a finally block is to
ensure that a set of code statements will always execute, exception (of any type) or not. To
illustrate, assume you want to always power down the car’s radio before exiting Main(), regardless
of any handled exception. The finally statement lets you execute code, after try...catch,
regardless of the result

try{
 int[] myNumbers = {1, 2, 3};
 Console.WriteLine(myNumbers[10]);}catch (Exception e){
 Console.WriteLine("Something went wrong.");
}
catch(Exception e)
{}
finally{
 Console.WriteLine("The 'try catch' is finished.");
}

Interfaces vs. Abstract Classes
The interface type seems very similar to an abstract base class. When a class is market as abstract, it
may define any number of abstract members to provide a polymorphic interface to all derived
types. But even when a class type does define a set of abstract members, it may define any number
of constructors, field data, nonabstract members, and so on. In contrast, interfaces only contain
abstract members.

The polymorphic interface established by an abstract parent class suffers from one major limitation
in that only derived types support the members defined by the abstract parent. But in larger

DOT NET PROGRAMMING

software, it is very common to develop multiple class hierarchies that have no common parent
beyond System.Object. Because abstract members in an abstract base class only apply to derived
types, we have no way to configure types in different hierarchies to support same polymorphic
interface.

C# - Interface
In the human world, a contract between the two or more humans binds them to act as per the
contract. In the same way, an interface includes the declarations of related functionalities. The
entities that implement the interface must provide the implementation of declared functionalities.

In C#, an interface can be defined using the interface keyword. An interface can contain

declarations of methods, properties, indexers, and events. However, it cannot contain fields, auto-
implemented properties.

The following interface declares some basic functionalities for the file operations.

Example: C# Interface

interface IFile
{
 void ReadFile();
 void WriteFile(string text);
}

You cannot apply access modifiers to interface members. All the members are public by default. If
you use an access modifier in an interface, then the C# compiler will give a compile-time error "The
modifier 'public/private/protected' is not valid for this item.". (Visual Studio will show an error
immediately without compilation.)

Example: Invalid Interface with Access Modifiers

interface IFile
{
 protected void ReadFile(); //compile-time error
 private void WriteFile(string text);//compile-time error
}

An interface can only contain declarations but not implementations. The following will give a
compile-time error.

Example: Invalid Interface with Implementation

interface IFile
{
 void ReadFile();
 void WriteFile(string text){
 Console.Write(text); //error: cannot implement method
 }
}

DOT NET PROGRAMMING

Implementing an Interface
A class or a Struct can implement one or more interfaces using colon (:).

Syntax: <Class or Struct Name> : <Interface Name>

For example, the following class implements the IFile interface implicitly.

Example: Interface Implementation

interface IFile
{
 void ReadFile();
 void WriteFile(string text);
}

class FileInfo : IFile
{
 public void ReadFile()
 {
 Console.WriteLine("Reading File");
 }

 public void WriteFile(string text)
 {
 Console.WriteLine("Writing to file");
 }
}

In the above example, the FileInfo class implements the IFile interface. It defines all the

members of the IFile interface with public access modifier. The FileInfo class can also

contain members other than interface members.

Note:
Interface members must be implemented with the public modifier; otherwise, the compiler will

give compile-time errors. You can create an object of the class and assign it to a variable of an
interface type, as shown below.

Example: Interface Implementation

public class Program
{
 public static void Main()
 {
 IFile file1 = new FileInfo();
 FileInfo file2 = new FileInfo();

 file1.ReadFile();
 file1.WriteFile("content");

 file2.ReadFile();
 file2.WriteFile("content");

DOT NET PROGRAMMING

 }
}
Above, we created objects of the FileInfo class and assign it to IFile type variable and

FileInfo type variable. When interface implemented implicitly, you can access IFile members

with the IFile type variables as well as FileInfo type variable.

Explicit Implementation
An interface can be implemented explicitly using <InterfaceName>.<MemberName>.

Explicit implementation is useful when class is implementing multiple interfaces; thereby, it is more
readable and eliminates the confusion. It is also useful if interfaces have the same method name
coincidently.

Note: Do not use public modifier with an explicit implementation. It will give a compile-time error.
Example: Explicit Implementation

interface IFile
{
 void ReadFile();
 void WriteFile(string text);
}

class FileInfo : IFile
{
 void IFile.ReadFile()
 {
 Console.WriteLine("Reading File");
 }

 void IFile.WriteFile(string text)
 {
 Console.WriteLine("Writing to file");
 }}
When you implement an interface explicitly, you can access interface members only through the
instance of an interface type.

Example: Explicit Implementation

interface IFile
{
 void ReadFile();
 void WriteFile(string text);
}

class FileInfo : IFile
{
 void IFile.ReadFile()
 {
 Console.WriteLine("Reading File");
 }

DOT NET PROGRAMMING

 void IFile.WriteFile(string text)
 {
 Console.WriteLine("Writing to file");
 }

 public void Search(string text)
 {
 Console.WriteLine("Searching in file");
 }
}

public class Program
{
 public static void Main()
 {
 IFile file1 = new FileInfo();
 FileInfo file2 = new FileInfo();

 file1.ReadFile();
 file1.WriteFile("content");
 //file1.Search("text to be searched")//compile-time error

 file2.Search("text to be searched");
 //file2.ReadFile(); //compile-time error
 //file2.WriteFile("content"); //compile-time error
 }
}

In the above example, file1 object can only access members of IFile, and file2 can only

access members of FileInfo class. This is the limitation of explicit implementation.

Implementing Multiple Interfaces
A class or struct can implement multiple interfaces. It must provide the implementation of all the
members of all interfaces.

Example: Implement Multiple Interfaces

interface IFile
{
 void ReadFile();
}

interface IBinaryFile
{

DOT NET PROGRAMMING

 void OpenBinaryFile();
 void ReadFile();
}

class FileInfo : IFile, IBinaryFile
{
 void IFile.ReadFile()
 {
 Console.WriteLine("Reading Text File");
 }

 void IBinaryFile.OpenBinaryFile()
 {
 Console.WriteLine("Opening Binary File");
 }

 void IBinaryFile.ReadFile()
 {
 Console.WriteLine("Reading Binary File");
 }

 public void Search(string text)
 {
 Console.WriteLine("Searching in File");
 }
}

public class Program
{
 public static void Main()
 {
 IFile file1 = new FileInfo();
 IBinaryFile file2 = new FileInfo();
 FileInfo file3 = new FileInfo();

 file1.ReadFile();
 //file1.OpenBinaryFile(); //compile-time error
 //file1.SearchFile("text to be searched"); //compile-time error

 file2.OpenBinaryFile();
 file2.ReadFile();
 //file2.SearchFile("text to be searched"); //compile-time error

 file3.Search("text to be searched");
 //file3.ReadFile(); //compile-time error
 //file3.OpenBinaryFile(); //compile-time error
 }
}

Above, the FileInfo implements two interfaces IFile and IBinaryFile explicitly. It is

recommended to implement interfaces explicitly when implementing multiple interfaces to avoid
confusion and more readability.

 Points to Remember :

1. Interface can contain declarations of method, properties, indexers, and events.
2. Interface cannot include private, protected, or internal members. All the members are public

by default.

DOT NET PROGRAMMING

3. Interface cannot contain fields, and auto-implemented properties.
4. A class or a struct can implement one or more interfaces implicitly or explicitly. Use public

modifier when implementing interface implicitly, whereas don't use it in case of explicit
implementation.

5. Implement interface explicitly using InterfaceName.MemberName.

6. An interface can inherit one or more interfaces.

Invoking Interface Members at the Object Level

 The most straightforward way to interact with functionality supplied by a
given interface is to invoke the members directly from the object level

 For example, consider the following Main() method:

Explicit

 class FileInfo : IFile
{
 void IFile.ReadFile()
 {
 Console.WriteLine("Reading File");
 }

}

invoking :
 IFile file1 = new FileInfo();
 FileInfo file2 = new FileInfo();

 file1.ReadFile();

 file2.Search("text to be searched");
 //file2.ReadFile(); //compile-time error

implicit:

class FileInfo : IFile
{
 public void ReadFile()
 {
 Console.WriteLine("Reading File");
 }

}

invoking:
 IFile file1 = new FileInfo();
 FileInfo file2 = new FileInfo();

 file1.ReadFile();

 file2.ReadFile();

DOT NET PROGRAMMING

One way to determine at runtime whether a type supports a specific
interface is to use an explicit cast. If the type does not support the
requested interface, you receive an InvalidCastException. To handle this
possibility gracefully, use structured exception handling as in the following

example:

static void Main(string[] args)
{
...
// Catch a possible InvalidCastException.
Circle c = new Circle("Lisa");
IPointy itfPt = null;
try
{
itfPt = (IPointy)c;
Console.WriteLine(itfPt.Points);
}
catch (InvalidCastException e)
{
Console.WriteLine(e.Message);
}Console.ReadLine();
}

While you could use try/catch logic and hope for the best, it would be ideal
to determine which interfaces are supported before invoking the interface
members in the first place. Let’s see two ways of doing so.

Obtaining Interface References: The as Keyword
 determine whether a given type supports an interface by using the as
keyword. If the object can be treated as the specified interface, it will
returned a reference to the interface in question. If not, receive a null
reference. Therefore, be sure to check against a null value before
proceeding.

DOT NET PROGRAMMING

static void Main(string[] args)
{
// Can we treat hex2 as IPointy?
Hexagon hex2 = new Hexagon("Peter");
IPointy itfPt2 = hex2 as Ipointy;

if(itfPt2 != null)
Console.WriteLine("Points: {0}", itfPt2.Points);
else
Console.WriteLine("OOPS! Not pointy...");
Console.ReadLine();
}

Obtaining Interface References:The is Keyword
 check for an implemented interface using the is keyword . If the object in
question is not compatible with the specified interface, you are returned
the value false. On the other hand, if the type is compatible with the
interface in question, you can safely call the members without needing to
use try/catch logic.

To illustrate, assume you have an array of Shape types containing some
members that implement IPointy. Notice how you are able to determine
which items in the array support this interface using the is keyword, as
shown in this retrofitted Main() method:

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Interfaces *****\n");// Make an array of Shapes.
Shape[] myShapes = { new Hexagon(), new Circle(),
new Triangle("Joe"), new Circle("JoJo")} ;
for(int i = 0; i < myShapes.Length; i++)
{
// Recall the Shape base class defines an abstract Draw()
// member, so all shapes know how to draw themselves.
myShapes[i].Draw();
// Who’s pointy?

if(myShapes[i] is IPointy)
Console.WriteLine("-> Points: {0}", ((IPointy)myShapes[i]).Points);
else
Console.WriteLine("-> {0}\’s not pointy!",myShapes[i].PetName);
Console.WriteLine();
}
Console.ReadLine();
}

DOT NET PROGRAMMING

The output is as follows:
***** Fun with Interfaces *****
Drawing NoName the Hexagon
-> Points: 6
Drawing NoName the Circle
-> NoName’s not pointy!
Drawing Joe the Triangle
-> Points: 3
Drawing JoJo the Circle
-> JoJo’s not pointy!

Interfaces As Parameters

Given that interfaces are valid .NET types, it is possible construct methods that take interfaces as
parameters, as illustrated by the CloneMe() method earlier in this chapter. For the current example,
assume you have defined another interface named Idraw3D.

// Models the ability to render a type in stunning 3D.public interface IDraw3D
{
void Draw3D();
}

Next, assume that two of your three shapes (ThreeDCircle and Hexagon) have been
configured to support this new behavior.

// Circle supports IDraw3D.
class ThreeDCircle : Circle, IDraw3D
{
...
public void Draw3D()
{ Console.WriteLine("Drawing Circle in 3D!"); }
}
// Hexagon supports IPointy and IDraw3D.

class Hexagon : Shape, IPointy, IDraw3D
{
...
public void Draw3D()
{ Console.WriteLine("Drawing Hexagon in 3D!"); }
}

DOT NET PROGRAMMING

 Figure -presents the updated Visual Studio class diagram.

In Figure The updated shapes hierarchyIf you now define a method taking an IDraw3D interface
as a parameter, you can effectively send in any object implementing IDraw3D.

 Consider the following method defined within Program class:

// I’ll draw anyone supporting IDraw3D.
static void DrawIn3D(IDraw3D itf3d)
{

Console.WriteLine("-> Drawing IDraw3D compatible type");
itf3d.Draw3D();

}

static void Main(string[] args)
{
Console.WriteLine("***** Fun with Interfaces *****\n");
Shape[] myShapes = { new Hexagon(), new Circle(),new Triangle("Joe"), new Circle("JoJo") } ;
for(int i = 0; i < myShapes.Length; i++)
{
...
// Can I draw you in 3D?

if(myShapes[i] is IDraw3D)
DrawIn3D ((IDraw3D) myShapes [i]);

}
}

Here is the output of the updated application. Notice that only the Hexagon object prints out in
3D, as the other members of the Shape array do not implement the IDraw3D interface.

***** Fun with Interfaces *****

DOT NET PROGRAMMING

Drawing NoName the Hexagon
-> Points: 6
-> Drawing IDraw3D compatible type
Drawing Hexagon in 3D!
Drawing NoName the Circle
-> NoName’s not pointy!
Drawing Joe the Triangle
-> Points: 3
Drawing JoJo the Circle
-> JoJo’s not pointy!

Interfaces As Return Values

Interfaces can also be used as method return values. For example, you could write a method that
takes an array of Shape objects and returns a reference to the first item that supports Ipointy.

// This method returns the first object in the
// array that implements IPointy.
static IPointy FindFirstPointyShape(Shape[] shapes)
{

foreach (Shape s in shapes)
{

if (s is IPointy)
return s as IPointy;

}
return null;

}

You could interact with this method as follows:
static void Main(string[] args)
{

Console.WriteLine("***** Fun with Interfaces *****\n");
// Make an array of Shapes.
Shape[] myShapes = { new Hexagon(), new Circle(),
new Triangle("Joe"), new Circle("JoJo")};
// Get first pointy item.
// To be safe, you’d want to check firstPointyItem for null before proceeding.
1IPointy firstPointyItem = FindFirstPointyShape(myShapes);
1Console.WriteLine("The item has {0} points", firstPointyItem.Points);
...
}

DOT NET PROGRAMMING

Arrays of Interface Types

 same interface can be implemented by numerous types, even if they are not within the same class
hierarchy and do not have a common parent class beyond System.Object. This can yield some
powerful programming constructs. For example, assume you have developed three new
class types within your current project that model kitchen utensils (via Knife and Fork classes)
and another modeling gardening equipment (à la PitchFork).

Consider below Figure Recall that interfaces can be “plugged into” any type in any part of a class
hierarchy If you defined the PitchFork, Fork, and Knife types, you could now define an array of
IPointy-compatible objects. Given that these members all support the same interface, you can
iterate through the array and treat each item as an IPointy-compatible object, regardless of the
overall diversity of the class hierarchies.

static void Main(string[] args)
{
...
// This array can only contain types that
// implement the IPointy interface.
IPointy[] myPointyObjects = {new Hexagon(), new Knife(), new Triangle(), new Fork(), new Pitch
Fork()};
foreach(IPointy i in myPointyObjects)

Console.WriteLine("Object has {0} points.", i.Points);
Console.ReadLine();

}
Just to highlight the importance of this example, remember this: when you have an array of a given
interface, the array can contain any class or structure that implements that interface.

polymorphic interface
The polymorphic interface established by an abstract parent class suffers from one major limitation
in that only derived types support the members defined by the abstract parent. But in larger

DOT NET PROGRAMMING

software, it is very common to develop multiple class hierarchies that have no common parent
beyond System.Object. Because abstract members in an abstract base class only apply to derived
types, we have no way to configure types in different hierarchies to support same polymorphic
interface.

Explicit

 class FileInfo : IFile
{
 void IFile.ReadFile()
 {
 Console.WriteLine("Reading File");
 }

}

invoking :
 IFile file1 = new FileInfo();
 FileInfo file2 = new FileInfo();

 file1.ReadFile();

 file2.Search("text to be searched");
 //file2.ReadFile(); //compile-time error

implicit:

class FileInfo : IFile
{
 public void ReadFile()
 {
 Console.WriteLine("Reading File");
 }

}

invoking:

 IFile file1 = new FileInfo();
 FileInfo file2 = new FileInfo();

 file1.ReadFile();

 file2.ReadFile();

class FileInfo : IFile
{
 public void ReadFile()
 {
 Console.WriteLine("Reading File");
 }

}

DOT NET PROGRAMMING

class PHOTO : IFile
{
 public void ReadFile()
 {
 Console.WriteLine("Reading File");
 }

}

invoking:

 IFile file1 = new FileInfo();
 IFile filep = new PHOTO();

 FileInfo file2 = new FileInfo();

 file1.ReadFile();

 file2.ReadFile();

Collection Interfaces
A collection is a set of related objects. Unlike arrays, a collection can grow and shrink dynamically
as the number of objects added or deleted. A collection is a class, so you must declare a new
collection before you can add elements to that collection.

All of the collection types use some common interfaces. These common interfaces define the basic
functionality for each collection class. The key collections interfaces are – IEnumerable,
ICollection, IDictionary and IList.

DOT NET PROGRAMMING

IEnumerable acts as a base interface for all the collection types that is extended by ICollection.
ICollection is further extended by IDictionary and IList.

IEnumerable :Provides an enumerator which supports a simple iteration over a non-generic
collection.
ICollection :Defines size, enumerators and synchronization methods for all nongeneric collections.
IDictionary :Represents a nongeneric collection of key/value pairs.
IList :Represents a non-generic collection of objects that can be individually accessed by index.
All collections interfaces are not implemented by all the collections. It depends on collection nature.

For example, IDictionary interface would be implemented by only those collection classes which
support key/value pairs, like HasTable and SortedList etc.

Features of Collections

Though all the collections have the ability to add, remove or find items in a
collection they also have some additional features as mentioned below,

1. Ability to enumerate collections.
2. Ability to copy collection contents to an array.
3. Capacity and Count properties.
4. Consistent lower bound.
5. Synchronization for access from multiple threads.

Interfaces
Interfaces

IAsyncEnumerable<T>
Exposes an enumerator that provides asynchronous
iteration over values of a specified type.

IAsyncEnumerator<T>
Supports a simple asynchronous iteration over a generic
collection.

ICollection<T> Defines methods to manipulate generic collections.

IComparer<T> Defines a method that a type implements to compare two
objects.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icomparer-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerator-1?view=net-5.0

DOT NET PROGRAMMING

IDictionary<TKey,TValue> Represents a generic collection of key/value pairs.

IEnumerable<T>
Exposes the enumerator, which supports a simple iteration
over a collection of a specified type.

IEnumerator<T> Supports a simple iteration over a generic collection.

IEqualityComparer<T>
Defines methods to support the comparison of objects for
equality.

IList<T>
Represents a collection of objects that can be individually
accessed by index.

IReadOnlyCollection<T>
Represents a strongly-typed, read-only collection of
elements.

IReadOnlyDictionary<TKey,TValue
>

Represents a generic read-only collection of key/value
pairs.

IReadOnlyList<T>
Represents a read-only collection of elements that can be
accessed by index.

IReadOnlySet<T> Provides a readonly abstraction of a set.

ISet<T> Provides the base interface for the abstraction of sets.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.iset-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ireadonlyset-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ireadonlylist-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ireadonlydictionary-2?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ireadonlydictionary-2?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ireadonlycollection-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.idictionary-2?view=net-5.0

	Understanding Object Generations
	When the CLR is attempting to locate unreachable objects, it does not literally examine every object placed on the managed heap. Doing so, obviously, would involve considerable time, especially in larger (i.e., real-world) applications.
	To help optimize the process, each object on the heap is assigned to a specific “generation.” The idea behind generations is simple: the longer an object has existed on the heap, the more likely it is to stay there. For example, the class that defined the main window of a desktop application will be in memory until the program terminates. Conversely, objects that have only recently been placed on the heap (such as an object allocated within a method scope) are likely to be unreachable rather quickly.
	Given these assumptions, each object on the heap belongs to one of the following generations:
	Generation 0: Identifies a newly allocated object that has never been marked for
	collection
	Generation 1: Identifies an object that has survived a garbage collection (i.e., it was marked for collection but was not removed because the sufficient heap spacewas acquired)
	Generation 2: Identifies an object that has survived more than one sweep of the garbage collector
	The garbage collector will investigate all generation 0 objects first. If marking and sweeping (or said more plainly, getting rid of) these objects results in the required amount of free memory, any surviving objects are promoted to generation 1. To see how an object’s generation affects the collection process, ponder
	in Figure , which diagrams how a set of surviving generation 0 objects (A, B, and E) are promoted once the required memory has been reclaimed.
	Figure 13-5. Generation 0 objects that survive a garbage collection are promoted to generation 1If all generation 0 objects have been evaluated but additional memory is still required, generation
	1 objects are then investigated for reachability and collected accordingly. Surviving generation 1
	objects are then promoted to generation 2. If the garbage collector still requires additional memory,
	generation 2 objects are evaluated. At this point, if a generation 2 object survives a garbage
	collection, it remains a generation 2 object, given the predefined upper limit of object generations.
	The bottom line is that by assigning a generational value to objects on the heap, newer objects (such as local variables) will be removed quickly, while older objects (such as a program’s main window) are not “bothered” as ofte
	 Finally Block
	 C# - Interface
	 Implementing an Interface
	 Explicit Implementation
	 Implementing Multiple Interfaces
	 Collection Interfaces
	 Features of Collections
	 Interfaces

