
DOT NET PROGRAMMING

DOT NET PROGRAMMING

CHAPTER -2 :C# language fundament mentals

SESSION - 9: Anatomy of a basic C# class

C# demands that all program logic be contained within a type definition Unlike many other
languages, in C# it is not possible to create global functions or globalpoints of data. Rather, all data
members and all methods must be contained within a type definition.To get the ball rolling, create a
new Console Application project named SimpleCSharpApp. You might agree that the code within
the initial Program.cs file is rather uneventful.

Using System;
Using System.Collections.Generic;
Using System.Linq;
Using System.Text;
Using System.Threading.Tasks;

namespace SimpleCSharpApp
{
 class Program {
 static void Main(string[] args)
 {
 // Display a simple message to the user.
 Console.WriteLine("***** My First C# App *****");

Console.WriteLine("Hello World!");
Console.WriteLine();

// Wait for Enter key to be pressed before shutting down.
Console.ReadLine();

 }
 }

}

Note C# is a case-sensitive programming language. Therefore, Main is not the
same as main, and

DOT NET PROGRAMMING

Readline is not the same as ReadLine. Be aware that all C#
keywords are lowercase (e.g., public,lock, class, dynamic), while
namespaces, types, and member names begin (by convention) withan
initial capital letter and have capitalized the first letter of
any embedded words
(e.g.,Console.WriteLine,System.Windows.MessageBox,
System.Data.SqlClient).As a rule of thumb, whenever you receive a
compiler error regarding “undefined symbols,” be sure to check

your spelling and casing first!

using System;

Here, using System is the .NET Framework library namespaces, and we used using keyword

to import system namespace to use existing class methods such as WriteLine(), ReadLine(), etc.

By default, the .NET Framework provides a lot of namespaces to make the application
implementation easy.The namespace is a collection of classes, and classes are the collection of
objects and methods.

namespace HelloWorld

Here, namespace HelloWorld is the main namespace of our application, and by default, our

application classes will be a part of it.

class Program

Here, class Program is used to define a class (Program) in the namespace (Helloworld). The

class (Program) will contain all the variables, methods, etc., and we can define more than one class
in same namespace based on our requirements.

DOT NET PROGRAMMING

static void Main(string[] args)

Here, static void Main(string[] args) is used to define a method in our class

(Program).

 The keyword static tells us that the main method can be accessible without instantiating

the class (Program).
 Another keyword void tells us that what this method should return.

 The name Main will refer to the name of our class method (Program). The Main() method
is the entry point of our console application.

 After the name (Main) of a method, we defined a set of parameters within parentheses. Here
our method takes only one parameter, called args and it is useful to send command-line

arguments as text strings for our main method.

Console.WriteLine() / ReadLine()

Here, Console.WriteLine() and Console.ReadLine() methods are used to write a text

to the console and read the input from the console.

The Console is a class of .NET Framework namespace System and WriteLine() and ReadLine()

are the methods of Console class.

C# Class Members
As discussed, a class can contain multiple data members in the c# programming language. The
following table lists a different type of data members that can be used in c# classes.

Member Description
Fields Variables of the class
Methods Computations and actions that can be performed by the class
Properties Actions associated with reading and writing named properties of the class
Events Notifications that can be generated by the class
Constructors Actions required to initialize instances of the class or the class itself
Operators Conversions and expression operators supported by the class
Constants Constant values associated with the class
Indexers Actions associated with indexing instances of the class like an array
Finalizers Actions to perform before instances of the class are permanently discarded
Types Nested types declared by the class

DOT NET PROGRAMMING

 Creating objects:

In c#, Classes and Objects are interrelated. The class in c# is nothing but a collection of various
data members (fields, properties, etc.) and member functions. The object in c# is an instance of a
class to access the defined properties and methods.

We will now learn the classes and objects in c# and how to use them in c# applications with
examples.

C# Class
In c#, Class is a data structure, and it will combine various types of data members such as fields,
properties, member functions, and events into a single unit.

Declaring a Class in C#
In c#, classes are declared by using class keyword. Following is the declaration of class in c#

programming language.

public class users {

// Properties, Methods, Events, etc.

}

If you observe the above syntax, we defined a class “users” using class keyword with public

access modifier. Here, the public access specifier will allow the users to create objects for this

class, and inside of the body class, we can create required fields,properties,methods,andeventsto use
in our applications.

Now we will see how to create a class in c# programming language with example.

C# Class Example
Following is the example of creating a class in c# programming language with various data
members and member functions.

DOT NET PROGRAMMING

public class Users
{
 public int id = 0;
 public string name = string.Empty;
 public Users()

 {
 // Constructor Statements

 }
 public void GetUserDetails(int uid, string uname)
 {
 id = uid;
 uname = name;
 Console.WriteLine("Id: {0}, Name: {1}", id, name);
 }
 public int Designation { get; set; }
 public string Location { get; set; }
}

If you observe the above c# class example, we defined a class “Users” with various data members
and member functions based on our requirements.

Following is the detailed description of various data members used in the above c# class example.

DOT NET PROGRAMMING

If you observe the above image, we used various data members likeaccess
modifiers,fields,properties, methods, constructors, etc., in our c# class based on our requirements.

We will learn more about c#access modifiers,fields,properties,methods,constructors, etc. topics in
the next chapters with examples.

C# Class Members
As discussed, a class can contain multiple data members in the c# programming language. The
following table lists a different type of data members that can be used in c# classes.

Member Description
Fields Variables of the class
Methods Computations and actions that can be performed by the class
Properties Actions associated with reading and writing named properties of the class
Events Notifications that can be generated by the class
Constructors Actions required to initialize instances of the class or the class itself
Operators Conversions and expression operators supported by the class
Constants Constant values associated with the class
Indexers Actions associated with indexing instances of the class like an array

DOT NET PROGRAMMING

Member Description
Finalizers Actions to perform before instances of the class are permanently discarded
Types Nested types declared by the class
We can use the required data members while creating a class in c# programming language based on
our requirements.

C# Object
In c#, Object is an instance of a classthat can be used to access the data members and member
functions of a class.

Creating Objects in C#
Generally, we can say that objects are the concrete entities of classes. In c#, we can create objects
by using a new keyword followed by the class's name like as shown below.

Users user = new Users();

If you observe the above example, we created an instance (user) for the class (Users), which we
created in the previous section. Now the instance “user” is a reference to an object that is based on
Users. Using the object name “user” we can access all the data members and member functions of
the Users class.

C# Objects Example
Following is the example of creating objects in the c# programming language.

DOT NET PROGRAMMING

using System;

namespace Tutlane
{
 class Program
 {
 static void Main(string[] args)
 {
 Users user = new Users("Suresh Dasari", 30);
 user.GetUserDetails();
 Console.WriteLine("Press Enter Key to Exit..");
 Console.ReadLine();
 }
 }
 public class Users
 {
 public string Name { get; set; }
 public int Age { get; set; }
 public Users(string name, int age)
 {
 Name = name;
 Age = age;
 }
 public void GetUserDetails()
 {
 Console.WriteLine("Name: {0}, Age: {1}", Name, Age);
 }
 }
}

If you observe the above example, we created a new class called “Users” with a required data
members and member functions. To access Users class methods and properties, we created an
object (user) for theUsers class and performing the required operations.

When we execute the above c# program, we will get the result as shown below.

DOT NET PROGRAMMING

 Constructor basics

Constructor

In c#, Constructor is a method that will invoke automatically whenever an instance of class or
struct is created. The constructor will have the same name as the class or struct, and it useful to
initialize and set default values for the data members of the new object.

If we create a class without having any constructor, then the compiler will automatically create a
one default constructor for that class. So, there is always one constructor that will exist in every
class.

In c#, a class can contain more than one constructor with different types of arguments. The
constructors will never return anything, so we don’t need to use any return type, not even void,
while defining the constructor method in the class.

C# Constructor Syntax
As discussed, the constructor is a method, and it won’t contain any return type. If you want to create
a constructor in c#, then you need to create a method with the class name.

Following is the syntax of creating a constructor in the c# programming language.

public class User
{
// Constructor
public User()
{
// Your Custom Code
}
}

If you observe the above syntax, we created a class called “User” and a method whose name is
same as the class name. Here the method User() will become a constructor of our class.

C# Constructor Types
In c#, we have a different type of constructors available; those are

 Default Constructor
 Parameterized Constructor
 Copy Constructor

DOT NET PROGRAMMING

 Static Constructor
 Private Constructor

Now we will learn about each constructor in a detailed manner with examples in the c#
programming language.

C# Default Constructor
In c#, if we create a constructor without having any parameters, then we will call it a default
constructor, and every instance of the class will be initialized without any parameter values.

Following is the example of defining the default constructor in the c# programming language.

using System;
namespace Tutlane
{
 class User
 {
 public string name, location;
 // Default Constructor
 public User()
 {
 name = "Suresh Dasari";
 location = "Hyderabad";
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 // The constructor will be called automatically once the instance of the class created
 User user = new User();
 Console.WriteLine(user.name);
 Console.WriteLine(user.location);
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we created a class called “User” and the constructor method
“User()” without having any parameters. When we create an instance of our class (User),
automatically our constructor method will be called.

DOT NET PROGRAMMING

If you observe the above result, our constructor method has called automatically and initialized the
parameter values after creating an instance of our class.

C# Parameterized Constructor
In c#, if we create a constructor with at least one parameter, then we will call it a parameterized
constructor, and every instance of the class will be initialized with parameter values.

Following is the example of defining the parameterized constructor in the c# programming
language.

using System;

namespace Tutlane
{
 class User
 {
 public string name, location;
 // Parameterized Constructor
 {
 name = a;
 location = b;
 }
 }
 class Program
 {

DOT NET PROGRAMMING

 static void Main(string[] args)
 {
 // The constructor will be called automatically once the instance of the class created
 User user = new User("Suresh Dasari", "Hyderabad");
 Console.WriteLine(user.name);
 Console.WriteLine(user.location);
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we created a class called “User” and the constructor method
“User(string, string)” with parameters. When we create an instance of our class (User) with the
required parameters, automatically our constructor method will be called.

When you execute the above c# program, you will get the result as shown below.

If you observe the above result, our constructor method has called automatically and initialized the
parameter values after creating an instance of our class with the required parameters.

 Static Constructors

DOT NET PROGRAMMING

A static constructor is used to initialize any static data, or to perform a particular action that needs to
be performed only once. It is called automatically before the first instance is created or any static
members are referenced.

class SimpleClass
{
 // Static variable that must be initialized at run time.
 static readonly long baseline;

 // Static constructor is called at most one time, before any
 // instance constructor is invoked or member is accessed.
 static SimpleClass()
 {
 baseline = DateTime.Now.Ticks;
 }
}

Static constructors have the following properties:

 A static constructor doesn't take access modifiers or have parameters.

 A class or struct can only have one static constructor.

 Static constructors cannot be inherited or overloaded.

 A static constructor cannot be called directly and is only meant to be called by the common
language runtime (CLR). It is invoked automatically.

 The user has no control on when the static constructor is executed in the program.

 A static constructor is called automatically. It initializes the class before the first instance is
created or any static members are referenced. A static constructor runs before an instance
constructor. A type's static constructor is called when a static method assigned to an event or
a delegate is invoked and not when it is assigned. If static field variable initializers are
present in the class of the static constructor, they're executed in the textual order in which
they appear in the class declaration. The initializers run immediately prior to the execution
of the static constructor.

DOT NET PROGRAMMING

Private Constructors
A private constructor is a special instance constructor. It is generally used in classes that contain
static members only. If a class has one or more private constructors and no public constructors,
other classes (except nested classes) cannot create instances of this class. For example:

class NLog
{
 // Private Constructor:
 private NLog() { }

 public static double e = Math.E; //2.71828...
}

The declaration of the empty constructor prevents the automatic generation of a parameterless
constructor. Note that if you do not use an access modifier with the constructor it will still be private
by default. However, the private modifier is usually used explicitly to make it clear that the class
cannot be instantiated.

Private constructors are used to prevent creating instances of a class when there are no instance
fields or methods, such as the Math class, or when a method is called to obtain an instance of a
class. If all the methods in the class are static, consider making the complete class static

Example
public class Counter
{
 private Counter() { }

 public static int currentCount;

 public static int IncrementCount()
 {
 return ++currentCount;
 }
}

class TestCounter
{
 static void Main()
 {

 Counter.currentCount = 100;
 Counter.IncrementCount();
 Console.WriteLine("New count: {0}", Counter.currentCount);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

DOT NET PROGRAMMING

C# Copy Constructor

A constructor that creates an object by copying variables from another object or that copies the data
of one object into another object is termed as the Copy Constructor. It is a parameterized
constructor that contains a parameter of the same class type. The main use of copy constructor is to
initialize a new instance to the values of an existing instance. Normally, C# does not provide a copy
constructor for objects, but if you want to create a copy constructor in your program you can create
according to your requirement.

Syntax:

class Class_Name {

 // Parameterized Constructor
 public Class_Name(parameter_list)
 {
 // code
 }

 // Copy Constructor
 public Class_Name(Class_Name instance_of_class)
 {
 // code
 }

 }

EXAMPLE

using System;

namespace simplecopyconstructor {

class technicalscripter {

// variables
private string topic_name;
private int article_no;

// copy constructor
public technicalscripter(technicalscripter tech)
{
topic_name = tech.topic_name;
article_no = tech.article_no;
}

public string Data
{

get
{

DOT NET PROGRAMMING

return "The name of topic is: " + topic_name +
" and number of published article is: " +
article_no.ToString();
} } }

public class GFG {

static public void Main()
{
technicalscripter t1 = new technicalscripter(" C# | Copy
Constructor", 38);

technicalscripter t2 = new technicalscripter(t1);

Console.WriteLine(t2.Data);
Console.ReadLine();
}
}
}

C# Constructor Overloading
In c#, we can overload the constructor by creating another constructor with the same method name
but with different parameters.

Following is the example of implementing a constructor overloading in the c# programming
language.

 using System;
namespace Tutlane
{
 class User
 {
 public string name, location;
 // Default Constructor
 public User() {
 name = "Suresh Dasari";
 location = "Hyderabad";
 }
 // Parameterized Constructor
 public User(string a, string b)
 {
 name = a;
 location = b;

DOT NET PROGRAMMING

 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 User user = new User(); // Default Constructor will be called
 User user1 = new User("Rohini Alavala", "Guntur"); // Parameterized Constructor will be called
 Console.WriteLine(user.name + ", " + user.location);
 Console.WriteLine(user1.name + ", " + user1.location);
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we created a class called “User” and overloaded a constructor
“User()” by creating another constructor “User(string, string)” with the same name but with
different parameters.

When you execute the above c# program, you will get the result as shown below.

If you observe the above result, the respective constructor methods will be called automatically
when we create an instance of our class with or without parameters based on our requirements.

C# Constructor Chaining
In c#, Constructor Chaining is an approach to invoke one constructor from another constructor. To
achieve constructor chaining, we need to use this keyword after our constructor definition.

Following is the example of implementing a constructor chaining in c# programming language.

using System;

namespace Tutlane
{

class User
{

public User()
{

Console.Write("Hi, ");

DOT NET PROGRAMMING

}
public User(string a): this()

{
Console.Write(a);

}

public User(string a, string b): this("welcome")
{

Console.Write(a + " " + b);
}
}

class Program
{
 static void Main(string[] args)

{
 User user1 = new User(" to", "tutlane");

Console.WriteLine();
Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();

}
 }
}

If you observe the above example, we created different constructors with different parameters, and
we are calling one constructor from another constructor using this keyword.

When you execute the above c# program, you will get the result as shown below.

If you observe the above result, we are able to call one constructor from another constructor to
achieve constructor chaining in the c# programming language.

This is how we can achieve constructor chaining in our applications using the c# programming
language.

DOT NET PROGRAMMING

C# Destructor with Examples
In c#, Destructor is a special method of aclass,and it is used in aclassto destroy the object or
instances ofclasses. The destructor in c# will invoke automatically whenever the class instances
become unreachable.

Following are the properties of destructor in c# programming language.

 In c#, destructors can be used only in classes,and a class can contain only one destructor.
 The destructor inclasscan be represented by using thetilde (~) operator
 The destructor in c# won’t accept any parameters and access modifiers.
 The destructor will invoke automatically whenever an instance of aclassis no longer needed.
 The destructor is automatically invoked by the garbage collector whenever theclassobjects

are no longer needed in the application.

C# Destructor Syntax
Following is the syntax of defining a destructor in the c# programming language.

class User
{
 // Destructor
 ~User()
 {
 // your code
 }
}

If you observe the above syntax, we created a destructor with the sameclassname using thetilde (~)
operator. Here, you need to remember that the destructor name must be the same as theclassname in
the c# programming language.

C# Destructor Example
Following is the example of using destructor in c# programming language to destruct the unused
objects of a class.

using System;

namespace Tutlane
{
 class User
 {
 public User()
 {

DOT NET PROGRAMMING

 Console.WriteLine("An Instance of class created");
 }
 // Destructor
 ~User()
 {
 Console.WriteLine("An Instance of class destroyed");
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Details();
 GC.Collect();
 Console.ReadLine();
 }
 public static void Details()
 {
 // Created instance of the class
 User user = new User();
 }
 }
}

If you observe the above example, we created a class with adefault constructor and destructor.
Here we created an instance of class “User” in theDetails() method, and whenever the Details
function execution is done, then the garbage collector (GC) automatically will invoke a destructor
in theUser class to clear the object of a class.

When you execute the above c# program, you will get the result as shown below.

This is how we can use destructor in c# programming language to clear or destruct unused objects
based on our requirements.

variables initialization syntax,Default assignments & variables scope,

DOT NET PROGRAMMING

Different Data Types in C#
In C# programming language, we have a 3 different type of data types, those are

Type Data Types
Value Data Type int, bool, char, double, float, etc.
Reference Data Type string, class, object, interface, delegate, etc.
Pointer Data Type Pointers.
The following diagram will illustrate more detail about different data types in the c# programming
language.

C# Value Data Types
In c#, the Value Data Types will directly store the variable value in memory. In c#, the value data
types will accept both signed and unsigned literals.

The following table lists the value data types in c# programming language with memory size and
range of values.

Data Type .NET Type Size Range
byte Byte 8 bits 0 to 255
sbyte SByte 8 bits -128 to 127
int Int32 32 bits -2,147,483,648 to 2,147,483,647

DOT NET PROGRAMMING

Data Type .NET Type Size Range
uint UInt32 32 bits 0 to 4294967295
short Int16 16 bits -32,768 to 32,767
ushort UInt16 16 bits 0 to 65,535
long Int64 64 bits -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
ulong UInt64 64 bits 0 to 18,446,744,073,709,551,615
float Single 32 bits -3.402823e38 to 3.402823e38
double Double 64 bits -1.79769313486232e308 to 1.79769313486232e308
bool Boolean 8 bits True or False
decimal Decimal 128 bits (+ or -)1.0 x 10e-28 to 7.9 x 10e28
DateTime DateTime - 0:00:00am 1/1/01 to 11:59:59pm 12/31/9999

C# Reference Data Types
In c#, the Reference Data Types will contain a memory address of variable value because the
reference types won’t store the variable value directly in memory.

The following table lists the reference data types in c# programming language with memory size
and range of values.

Data Type .NET Type Size Range
string String Variable Length 0 to 2 billion Unicode characters
object Object - -

C# Pointer Data Types
In c#, the Pointer Data Types will contain a memory address of thevariable value. To get the
pointer details we have two symbols ampersand (&) and asterisk (*) in c# language.Following is the
syntax of declaring the pointer type in the c# programming language.

type* test;

Following is the example of defining the pointer type in the c# programming language.

int* a;
int* b;

The Data Type Class Hierarchy

DOT NET PROGRAMMING

It is interesting to note that even the primitive .NET data types are
arranged in a class hierarchy. If you are new to the world of inheritance,
you will discover the full details.the top of a class hierarchy provide some
default behaviors that are granted to the derived types. The relationship
between these core system types can be understood as
shown in Figure

C# Variables with Examples

DOT NET PROGRAMMING

In c#, Variables will represent storage locations, and each variable has a
particular type that determines what type of values can be stored in the
variable.

C# is a Strongly Typed programming language. Before we perform any operation on variables, it’s
mandatory to define a variable with the required data type to indicate what type of data that variable
can hold in our application.

Syntax of C# Variables Declaration
Following is the syntax of declaring and initializing variables in the c# programming language.

[Data Type] [Variable Name];
[Data Type] [Variable Name] = [Value];
[Access Specifier] [Data Type] [Variable Name] = [Value];

If you observe the above syntax, we added a required data type before the variable name to tell the
compiler about what type of data the variable can hold or which data type the variable belongs to.

 [Data Type] - It’s a type of data the variable can hold, such as integer, string, decimal, etc.
 [Variable Name] - It’s the name of the variable to hold the values in our application.
 [Value] - Assigning a required value to the variable.
 [Access Specifier] - It is used to define access permissions for the variable.

Now we will see how to define variables in our c# applications with examples.

C# Variables Declaration Example
Following is the example of using the variables in the c# programming language.

DOT NET PROGRAMMING

 using System;
namespace Tutlane
{
class Program

 {
static void Main(string[] args)
{
int number = 10;
string name = "Suresh Dasari";
double percentage = 10.23;
 char gender = 'M';
bool isVerified = true;
Console.WriteLine("Id: " + number);
Console.WriteLine("Name: " + name);
 Console.WriteLine("Percentage: " + percentage);

Console.WriteLine("Gender: " + gender);
Console.WriteLine("Verified: " + isVerified);
 Console.ReadLine();

 }
}
}

If you observe the above c# variables example, we defined multiple variables with different data
types and assigned values based on our requirements.

Output of C# Variables Declaration Example
When you execute the above program by pressing Ctrl + F5 or clicking on theStart option in the

menu bar, you will get the result shown below.

If you observe the above result, we are able to print the variables in our c# application based on our
requirements.

DOT NET PROGRAMMING

Rules to Declare C# Variables
Before we declare and define variables in the c# programming language, we need to follow
particular rules.

 define a variable name with a combination of alphabets, numbers, and underscore.
 A variable name must always start with either alphabet or underscore but not with numbers.
 While defining the variable, no white space is allowed within the variable name.
 Don't use any reserved keywords such as int, float, char, etc., for a variable name.
 In c#, once the variable is declared with a particular data type, it cannot be re-declared with

a new type, and we shouldn’t assign a value that is not compatible with the declared type.

The following are somevalid ways to define the variable names in the c# programming language.

int abc;
float a2b;
char _abc;

The following are some of theInvalid ways of defining the variable names in the c# programming
language.

int a b c;
float 2abc;
char &abc;
double int;

C# Multiple and Multi-Line Variables Declaration
In c#, we can declare and initialize multiple variables of the same data type in a single line by
separating with a comma.

Following is the example of defining the multiple variables of the same data type in a single line by
separating with a comma in the c# programming language.

int a, b, c;
float x, y, z = 10.5;

DOT NET PROGRAMMING

While declaring the multiple variables of the same data type, we can arrange them in multiple lines
to make them more readable. The compiler will treat it as a single statement until it encounters a
semicolon (;).

Following is the simple of defining the multiple variables of the same data type in multiple lines in
c# programming language.

int a,
 b,
 c;
float x,y,
 z = 10.5;

C# Variables Assignment
In c#, once we declare and assign a value to the variable that can be assigned to another variable of
the same data type.

 int a = 123;
int b = a;
string name = "suresh";
string firstname = name;

In c#, it’s mandatory to assign a value to the variable before we use it; otherwise, we will get a
compile-time error.

If we try to assign a value of string data type to an integer data type or vice versa, as shown below,
we will get an error like “cannot implicitly convert type int to string”.

int a = 123;
string name = a;

 basic inputs & output with the console class,

Console Class in C#

A console is an operating system window through which a user can communicate with the operating
system or we can say a console is an application in which we can give text as an input from the
keyboard and get the text as an output from the computer end. The command prompt is an example
of a console in the windows and which accept MS-DOS commands. The console contains two
attributes named as screen buffer and a console window.
In C#, the Console class is used to represent the standard input, output, and error streams for the
console applications. You are not allowed to inherit Console class. This class is defined under

DOT NET PROGRAMMING

System namespace. This class does not contain any constructor. Instead of the constructor, this class
provides different types of properties and methods to perform operations.

Properties

Property Description
BackgroundColor Gets or sets the background color of the console.
BufferHeight Gets or sets the height of the buffer area.
BufferWidth Gets or sets the width of the buffer area.

CapsLock
Gets a value indicating whether the CAPS LOCK keyboard toggle is
turned on or turned off.

CursorLeft Gets or sets the column position of the cursor within the buffer area.
CursorSize Gets or sets the height of the cursor within a character cell.
CursorTop Gets or sets the row position of the cursor within the buffer area.
CursorVisible Gets or sets a value indicating whether the cursor is visible.
Error Gets the standard error output stream.
ForegroundColor Gets or sets the foreground color of the console.
In Gets the standard input stream.
InputEncoding Gets or sets the encoding the console uses to read input.

IsErrorRedirected
Gets a value that indicates whether the error output stream has been
redirected from the standard error stream.

IsInputRedirected
Gets a value that indicates whether input has been redirected from the
standard input stream.

IsOutputRedirected
Gets a value that indicates whether output has been redirected from the
standard output stream.

KeyAvailable
Gets a value indicating whether a key press is available in the input
stream.

LargestWindowHeight
Gets the largest possible number of console window rows, based on the
current font and screen resolution.

LargestWindowWidth
Gets the largest possible number of console window columns, based on
the current font and screen resolution.

NumberLock
Gets a value indicating whether the NUM LOCK keyboard toggle is
turned on or turned off.

Out Gets the standard output stream.
OutputEncoding Gets or sets the encoding the console uses to write output.
Title Gets or sets the title to display in the console title bar.

TreatControlCAsInput
Gets or sets a value indicating whether the combination of the Control
modifier key and C console key (Ctrl+C) is treated as ordinary input or as
an interruption that is handled by the operating system.

WindowHeight Gets or sets the height of the console window area.

WindowLeft
Gets or sets the leftmost position of the console window area relative to
the screen buffer.

WindowTop
Gets or sets the top position of the console window area relative to the
screen buffer.

WindowWidth Gets or sets the width of the console window.
Example:

DOT NET PROGRAMMING

// C# program to illustrate how to get
// Background and Foreground color
// of the console
using System;

public class GFG {

static public void Main()
{

// Get the Background and foreground
// color of Console Using BackgroundColor
// and ForegroundColor property of Console
Console.WriteLine("Background color:{0}",
Console.BackgroundColor);

Console.WriteLine("Foreground color : {0}",
Console.ForegroundColor);
}
}

Output:

Background color : Black
Foreground color : Black

Methods
Method Description

Beep() Plays the sound of a beep through the console speaker.

Clear()
Clears the console buffer and corresponding console window of
display information.

MoveBufferArea()
Copies a specified source area of the screen buffer to a specified
destination area.

OpenStandardError() Acquires the standard error stream.
OpenStandardInput() Acquires the standard input stream.
OpenStandardOutput() Acquires the standard output stream.
Read() Reads the next character from the standard input stream.

ReadKey()
Obtains the next character or function key pressed by the user. The
pressed key is displayed in the console window.

ReadLine() Reads the next line of characters from the standard input stream.
ResetColor() Sets the foreground and background console colors to their defaults.

SetBufferSize(Int32, Int32)
Sets the height and width of the screen buffer area to the specified
values.

SetCursorPosition(Int32, Sets the position of the cursor.

DOT NET PROGRAMMING

Int32)
SetError(TextWriter) Sets the Error property to the specified TextWriter object.
SetIn(TextReader) Sets the In property to the specified TextReader object.
SetOut(TextWriter) Sets the Out property to the specified TextWriter object.
SetWindowPosition(Int32,
Int32)

Sets the position of the console window relative to the screen buffer.

SetWindowSize(Int32,
Int32)

Sets the height and width of the console window to the specified
values.

Write()
Writes the text representation of the specified value or values to the
standard output stream.

WriteLine()
Writes the specified data, followed by the current line terminator, to
the standard output stream.

C# Basic Input and Output
In this tutorial, we will learn how to take input from user and and display output in C# using various
methods

C# Output
In order to output something in C#, we can use

System.Console.WriteLine() OR
System.Console.Write()

Here, System is a namespace, Console is a class within namespace System and WriteLine

and Write are methods of class Console.

Let's look at a simple example that prints a string to output screen.

Example 1: Printing String using WriteLine()
using System;

namespace Sample
{
 class Test
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("C# is cool");
 }
 }
}

When we run the program, the output will be

C# is cool

DOT NET PROGRAMMING

Difference between WriteLine() and Write() method

The main difference between WriteLine() and Write() is that the Write() method only

prints the string provided to it, while the WriteLine() method prints the string and moves to the

start of next line as well.

Let's take at a look at the example below to understand the difference between these methods.

Example 2: How to use WriteLine() and Write() method?

using System;

namespace Sample
{
 class Test
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Prints on ");
 Console.WriteLine("New line");

 Console.Write("Prints on ");
 Console.Write("Same line");
 }
 }
}

When we run the program, the output will be

Prints on
New line
Prints on Same line

Printing Variables and Literals using WriteLine() and Write()

The WriteLine() and Write() method can be used to print variables and literals. Here's an

example.

Example 3: Printing Variables and Literals

using System;

namespace Sample
{
 class Test
 {
 public static void Main(string[] args)
 {
 int value = 10;

 // Variable
 Console.WriteLine(value);
 // Literal
 Console.WriteLine(50.05);
 }
 }
}

DOT NET PROGRAMMING

When we run the program, the output will be

10
50.05

Combining (Concatenating) two strings using + operator and printing them

Strings can be combined/concatenated using the + operator while printing.

Example 4: Printing Concatenated String using + operator

using System;

namespace Sample
{
 class Test
 {
 public static void Main(string[] args)
 {
 int val = 55;
 Console.WriteLine("Hello " + "World");
 Console.WriteLine("Value = " + val);
 }
 }
}

When we run the program, the output will be

Hello World
Value = 55

Printing concatenated string using Formatted String [Better Alternative]

A better alternative for printing concatenated string is using formatted string. Formatted string
allows programmer to use placeholders for variables. For example,

The following line,

Console.WriteLine("Value = " + val);

can be replaced by,

Console.WriteLine("Value = {0}", val);

{0} is the placeholder for variable val which will be replaced by value of val. Since only one

variable is used so there is only one placeholder.

Multiple variables can be used in the formatted string. We will see that in the example below.

Example 5: Printing Concatenated string using String formatting

using System;

namespace Sample
{
 class Test

DOT NET PROGRAMMING

 {
 public static void Main(string[] args)
 {
 int firstNumber = 5, secondNumber = 10, result;
 result = firstNumber + secondNumber;
 Console.WriteLine("{0} + {1} = {2}", firstNumber, secondNumber, result);
 }
 }
}

When we run the program, the output will be

5 + 10 = 15

Here, {0} is replaced by firstNumber, {1} is replaced by secondNumber and {2} is replaced by

result. This approach of printing output is more readable and less error prone than using + operator.

To know more about string formatting, visit C# string formatting.

DOT NET PROGRAMMING

C# Input
In C#, the simplest method to get input from the user is by using the ReadLine() method of the

Console class. However, Read() and ReadKey() are also available for getting input from the

user. They are also included in Console class.

Example 6: Get String Input From User
using System;

namespace Sample
{
 class Test
 {
 public static void Main(string[] args)
 {
 string testString;
 Console.Write("Enter a string - ");
 testString = Console.ReadLine();
 Console.WriteLine("You entered '{0}'", testString);
 }
 }
}

When we run the program, the output will be:

Enter a string - Hello World
You entered 'Hello World'

Difference between ReadLine(), Read() and ReadKey() method:

The difference between ReadLine(), Read() and

C# Arrays
In c#, Arrays are useful for storing multiple elements of the same data type at contiguous memory
locations and arrays. It will store a fixed number of elements sequentially based on the predefined
number of items.

DOT NET PROGRAMMING

In the previous chapter, we learned about variables in c#, which will help us hold a single value like
int x = 10;.If we want to hold more than one value of the same data type, then an array came into
the picture in c# to solve this problem.

An array can start storing the values from index 0. If we have an array with n elements, it will start
storing the elements from index 0 to n-1.

Following is the pictorial representation of storing the multiple values of the same type in the c#
array data structure.

If you observe the above diagram, we are storing the values in an array starting from index 0, and it
will continue to store the values based on the defined number of elements.

C# Arrays Declaration
In c#, Arrays can be declared by specifying the type of elements followed by the square brackets []
like as shown below.

type[] array_name;

Here, the type is nothing but adata typeof elements to store in an array, and array_name represents
an array's name.

For example, the following are the different ways of declaring an array with differentdata typesin
the c# programming language.

// Store only int values
int[] numbers;
//Store only string values
string[] names;
//Store only double values
double[] ranges;

If you observe the above examples, we declared arrays with the required data type based on our
requirements.

DOT NET PROGRAMMING

In c#, the array elements can be of any type, and by default, the values of numeric array elements
are set to zero, and the reference elements are set to null.

C# Arrays Initialization
In c#, Arrays can be initialized by creating an instance of the array with anew keyword. Using anew
keyword, we can declare and initialize an array at the same time based on our requirements.

Following are the different ways of declaring and initializing array elements by using thenew
keyword in the c# programming language.

// Declaring and Initializing an array with size of 5
int[] array = new int[5];
//Defining and assigning an elements at the same time
int[] array2 = new int[5]{1,2,3,4,5};
//Initialize with 5 elements will indicates the size of an array
int[] array3 = new int[] { 1, 2, 3, 4, 5 };
// Another way to initialize an array without size
int[] array4 = { 1, 2, 3, 4, 5 };
// Declare an array without initialization
int[] array5;
array5 = new int[]{ 1, 2, 3, 4, 5 };

In the first statement, we declared and initialized an integer array with the size of 5 to allow an array
to store 5 integer values. The array can contain elements from array[0] to array[4].

In the second statement, we declared and initialized an array same as the first statement and
assigned values to each index followed by curly brackets { }.

In a third or fourth statement, while declaration, we initialized an array with values without
specifying any size. Here, the size of an array can be determined by the number of elements, so the
size initializer is not required if we assign elements during the initialization.

In c#, we can declare an array variable without initialization, but we must use thenew keyword to
assign an array to the variable.

In the fifth statement, we declared an array without initialization, and we used a new keyword to
assign array values to the variable.

In c#, after an array declaration, we can initialize array elements using index values. Following is an
example of declaring and initializing array elements using individual index values in c#.

DOT NET PROGRAMMING

int[] array = new int[5];
array[0] = 1;
array[1] = 2;
array[2] = 3;
array[3] = 4;
array[4] = 5;

If you observe the above example, we are initializing an array of elements individually using
individual index values.

Generally, in c# initializing an array without size or assigning values to an array without anew
operator will throw compile-time errors. For example:

// Error. Initialize an array without size
int[] array = new int[];
// Error. Initialize an array without new keyword
int[] array1;
array1 = { 1, 2, 3, 4, 5 };

If you observe the above examples, we initialized an array without any size in the first statement.
Inthe second statement, we declared and initializing array elements without using thenew keyword.
These two statements will throw compile-time errors in our c# applications.

C# Accessing an Array Elements
In c#, we can access array elements using for loop or foreach loop or with particular index numbers.

Following is the code snippet of accessing array elements by using particular index numbers.

int[] array = new int[5] { 1, 2, 3, 4, 5 };
int a = array[1]; // It will return 2
int b = array[4]; // It will return 5

If you observe the above code, we are trying to access an array of elements using index values in
c#.

Following is the example of declaring, initializing, and accessing array elements with particular
index numbers in the c# programming language.

using System;
namespace Tutlane
{
 class Program

DOT NET PROGRAMMING

 {
 static void Main(string[] args)
 {
 int[] array = new int[5] { 1, 2, 3, 4, 5 };
 Console.WriteLine(array[0]);
 Console.WriteLine(array[1]);
 Console.WriteLine(array[2]);
 Console.WriteLine(array[3]);
 Console.WriteLine(array[4]);
 Console.WriteLine("Press Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we declared and initialized an array with 5 elements, and we are
accessing an array of elements using index values.

When we execute the above c# program, we will get the result as shown below.

If you observe the above result, we are able to access array elements using index numbers based on
our requirements.

C# Access Array Elements with For Loop
In c#, by usingfor loopwe can iterate through array elements and access the values of an array with
length property.

Following is the example of accessing array elements using for loop in c# programming language.

DOT NET PROGRAMMING

using System;

namespace Tutlane
{
 class Program
 {
 static void Main(string[] args)
 {
 int[] array = new int[5] { 1, 2, 3, 4, 5 };
 for (int i = 0; i < array.Length; i++)
 {
 Console.WriteLine(array[i]);
 }
 Console.WriteLine("Press Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we are looping through array elements withfor loopto access
array elements based on our requirements.

When we execute the above c# program, we will get the result as shown below.

If you observe the above result, we are able to loop through elements in an array withfor loopand
print array values based on our requirements.

C# Access Array Elements with Foreach Loop
In c#, same asfor loop,we can use theforeach loopto iterate through array elements and access the
values of an array based on our requirements.

Following is the example of accessing array elements using aforeach loopin the c# programming
language.

DOT NET PROGRAMMING

using System;

namespace Tutlane
{
 class Program
 {
 static void Main(string[] args)
 {
 int[] array = new int[5] { 1, 2, 3, 4, 5 };
 foreach(int i in array)
 {
 Console.WriteLine(i);
 }
 Console.WriteLine("Press Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we are looping through array elements with aforeach loopto
access array elements based on our requirements.

When we execute the above c# program, we will get the result as shown below.

If you observe the above result, we are able to loop through elements in an array withforeach
loopand print array values based on our requirements.

This is how we can access array elements in the c# programming language based on our
requirements.

DOT NET PROGRAMMING

C# Array Types
In c#, we have a different type of arrays available; those are

 Single-Dimensional Arrays

 Multi-Dimensional Arrays

 Jagged Arrays

Jagged array is a array of arrays such that member arrays can be of different sizes. In other
words, the length of each array index can differ.

C# Array Class
In c#, we have a class called Array, and it will act as a base class for all the arrays in the common
language runtime (CLR). The Array class provides methods for creating, manipulating, searching,
and sorting arrays.

For example, by using the Sort or Copy methods of the Array class, we can sort the elements of an
array and copy the elements of one array to another based on our requirements.

Following is the example of using an Array class to sort or filter or reverse array elements in the c#
programming language.

using System;
namespace Tutlane
{
 class Program
 {
 static void Main(string[] args)
 {
 int[] array = new int[5] { 1, 4, 2, 3, 5 };
 Console.WriteLine("---Initial Array Elements---");
 foreach (int i in array)
 {
 Console.WriteLine(i);
 }

DOT NET PROGRAMMING

 Array.Sort(array);
 Console.WriteLine("---Elements After Sort---");
 foreach (int i in array)
 {
 Console.WriteLine(i);
 }
 Array.Reverse(array);
 Console.WriteLine("---Elements After Reverse---");
 foreach (int i in array)
 {
 Console.WriteLine(i);
 }
 Console.WriteLine("Press Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we are sorting and changing the order of array elements using
Sort and Reverse methods of an Array class.

When we execute the above c# program, we will get the result as shown below.

DOT NET PROGRAMMING

If you observe the above result, we sorted the array elements and changed the order of array
elements using the Array class based on our requirements.

This is how we can use the required methods of Array class in our applications to implement the
required functionality.

C# String with Examples
In c#, thestring is a keyword that is useful to represent a sequential collection of characters called a
text, and the string is an object of theSystem.String type.

In c#, we use string keyword to create string variablest o hold the particular text, which is a
sequential collection of characters.

The stringvariablesin c# can hold any kind of text, and by using the Length property, we can know
that the number of characters the string variableis holding based on our requirements.

C# String Declaration and Initialization
The following are the different ways of declaring and initializing string variablesusing string
keyword in the c# programming language.

// Declare without initializing.
string str1;
// Declaring and Initializing
string str2 = "Welcome to Tutlane";
String str3 = "Hello World!";
// Initialize an empty string.
string str4 = String.Empty;
// Initialize to null.
String str5 = null;
// Creating a string from char
char[] letters = { 'A', 'B', 'C' };
string str6 = new string(letters);

If you observe the above code snippet, we created stringvariablesusing string and String keywords
with or without initializing values based on our requirements.

C# string vs. String
If you observe the above declarations, we used two keywords called string and String to declare
string variables. In c#, the string keyword is just an alias for String, so both string and String are
equivalent, and you can use whichever naming convention you prefer to define string variables.

DOT NET PROGRAMMING

C# String Immutability
In c#, thestring is immutable, which means the string object cannot be modified once it is created.
If any changes are made to the string object, like adding or modifying an existing value, it will
simply discard the old instance in memory and create a new instance to hold the new value.

For example, when we create a new string variable “msg” with the text “welcome”, a new instance
will create a heap memory to hold this value. Now, if we make any changes to themsg variable, like
changing the text from “welcome” to “welcome to tutlane”, then the old instance on heap memory
will be discarded, and another instance will create on heap memory to hold the variable value
instead of modifying the old instance in the memory.

In c#, if we perform modifications like inserting, concatenating, removing, or replacing a value of
the existing string multiple times, every time the new instance will create on heap memory to hold
the new value, so automatically the performance of the application will be affected.

DOT NET PROGRAMMING

C# String Literals (Regular, Verbatim)
In c#, string literal is a sequence of characters enclosed in double quotation marks (" "). We have
two kinds of string literals available in c#; those are regular and verbatim. The regular literals are
useful when we want to embed escape characters like \n, \t, \', \", etc. in c#.

 Regular :

string names = "Suresh\nRohini\nTrishika";
Console.WriteLine(names);
/*
Output:
Suresh
Rohini
Trishika
*/
string msg = "Welcome to \"tutlane\" world";
Console.WriteLine(msg);
// Output: Welcome to "tutlane" world

verbatim :
In c#, the special character @ will serve as verbatim literal, and it is useful to represent a multiline

string or a string with backslash characters, for example, to represent file paths.

Following is an example of using verbatim literal @ in c# programming language to represent a

multiline string and a file path.

string path = @"C:\Users\Tutlane\Documents\";
Console.WriteLine(path);
//Output: C:\Users\Tutlane\Documents\

string msg = @"Hi Guest,
Welcome to Tutlane World
Learning Made Easy";
Console.WriteLine(msg);
/* Output:
Hi Guest,
Welcome to Tutlane World
Learning Made Easy
*/

string msg1 = @"My daughter name was ""Trishika.""";
Console.WriteLine(msg1);
//Output: My daughter name was "Trishika."

DOT NET PROGRAMMING

If you observe the above examples, we used a verbatim character @ to represent multiline strings or

backslash character strings, etc., based on our requirements.

C# Format Strings
In c#, the format string is a string whose contents can be determined dynamically at runtime. We
can create a format string using theFormat method and embedding placeholders in braces that will
be replaced by other values at runtime.

Following is the example of using a format string to determine the string content dynamically at
runtime in the c# programming language.

string name = "Suresh Dasari";
string location = "Hyderabad";
string user = string.Format("Name: {0}, Location: {1}", name, location);
Console.WriteLine(user);
// Output: Name: Suresh Dasari, Location: Hyderabad

If you observe the above code, we are formatting a string using theFormat method and replacing
the placeholders in braces with required values.

C# Access Individual Characters from Strings
In c#, we can access individual characters from string by using array notation with index values.

Following is the example of accessing individual characters from the string by specifying the index
position.

string name = "Suresh Dasari";
for (int i = 0; i < name.Length; i++)
{
Console.Write(name[i]);
}
// Output: Suresh Dasari

If you observe the above example, we are looping through characters in a string using for loop and
displaying each character of string based on the index position.

DOT NET PROGRAMMING

C# String Example
Following is the example declaring and initializing strings, formatting string value, and use string
literals to represent data in the c# programming language.

using System;
namespace Tutlane
{
 class Program
 {
 static void Main(string[] args)
 {
 string firstname = "Suresh";
 string lastname = "Dasari";
 string location = "Hyderabad";
 string name = firstname + " " + lastname;
 Console.WriteLine(name);
 string userInfo = string.Format("Name: {0}, Location: {1}", name, location);
 Console.WriteLine(userInfo);
 string names = "Suresh\nRohini\nTrishika";
 Console.WriteLine(names);
 string path = @"C:\Users\Tutlane\Documents\";
 Console.WriteLine(path);
 string msg = @"Hi Guest, Welcome to Tutlane World Learning Made Easy";
 Console.WriteLine(msg);
 string msg1 = @"Her name was ""Trishika.""";
 Console.WriteLine(msg1);
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above code, we declared and initialized string variables, formatted string using
Format method, and used string literals to embed escape characters, etc., based on our
requirements.

When you execute the above c# program, you will get the result as shown below.

DOT NET PROGRAMMING

C# String Properties
The following table lists the available string properties in the c# programming language.

Property Description

Chars
It helps us to get the characters from the current string object based on the specified
position.

Length It returns the number of characters in the current String object.

C# String Methods
In c#, the string class contains various methods to manipulate string objects based on our
requirements.The following table lists important string methods available in the c# programming
language.

Method Description
Clone() It returns a reference to this instance of String.
Compare(String, 
String)

It compares two specified String objects and returns an integer that
indicates their relative position in the sort order.

Concat(String, String) It concatenates two specified instances of String.

Contains(String)
It returns a value indicating whether a specified substring occurs within
this string.

Copy(String)
It creates a new instance of String with the same value as a specified
String.

Format(String, Object)
It replaces one or more format items in a specified string with the string
representation of a specified object.

Trim()
It removes all leading and trailing white-space characters from the current
String object.

ToLower() It converts a given string to a lowercase.
ToUpper() It converts a given string to uppercase.

Split(Char[])
It splits a string into substrings that are based on the characters in an
array.

Substring(Int32)
It retrieves a substring from this instance. The substring starts at a
specified character position and continues to the end of the string.

DOT NET PROGRAMMING

 EXAMPLES

 1. Splitting a String by another string

string str = "this—is--a--complete--sentence";
string[] tokens = str.Split(new[] { "--" }, StringSplitOptions.None);

Result:
["this", "is", "a", "complete", "sentence"]

Getting Substrings of a given string

string helloWorld = "Hello World!";
string world = helloWorld.Substring(6); //world = "World!"
string hello = helloWorld.Substring(0,5); // hello = "Hello"

Replacing a string within a string
Using the System.String.Replace method,

string s = "Hello World";
s = s.Replace("World", "Universe"); // s = "Hello Universe"

String Contains String

using System;

namespace StringApplication {

 class StringProg {

 static void Main(string[] args) {
 string str = "This is test";

 if (str.Contains("test")) {
 Console.WriteLine("The sequence 'test' was found.");
 }
 Console.ReadKey() ;
 }
 }
}

DOT NET PROGRAMMING

C# Static Keyword
In c#, static is a keyword or a modifier that is useful to make a class or methods or variable
properties, not instantiable which means we cannot instantiate the items which we declared with a
static modifier.

The static members which we declared can be accessed directly with a type name. Suppose if we
apply a static modifier to a class property or a method or variable, we can access those static

members directly with a class name instead of creating an object of a class to access those
properties.

C# Static Variables
Following is the example of defining a class with static properties, and those can be accessed
directly with the type instead of a specific object name.

class User
{
public static string name, location;
public static int age;
}

If you observe the above example, we defined variables with static keyword, and we can access

those variables directly with a type name like User.name or User.location and User.age.

Following is the example of accessing the variables directly with a type name in the c#
programming language.

Console.WriteLine(User.name);
Console.WriteLine(User.location);
Console.WriteLine(User.age);

If you observe the above statements, we are accessing our static properties directly using the class
name instead of the class instance.

Generally, in c# the instance of a class will contain a separate copy of all instance fields so that the
memory consumption will increase automatically, but if we use static modifier, there is only one

copy of each field, so automatically, the memory will be managed efficiently.

DOT NET PROGRAMMING

In c#, we can use static modifier with classes, methods, properties, constructors, operators,

fields, and events, but it cannot be used with indexers, finalizers, or types other than classes.

C# Static Keyword Example
Following is the example of creating a class by including both static and non-static variables &
methods. Here we can access non-static variables and methods by creating an instance of the class,
but it won't allow us to access the static fields with an instance of the class so the static variables
and methods can be accessed directly with the class name.

using System;

namespace Tutlane
{
 class User
 {
 // Static Variables
 public static string name, location;
 //Non Static Variable
 public int age;
 // Non Static Method
 public void Details()
 {
 Console.WriteLine("Non Static Method");
 }
 // Static Method
 public static void Details1()
 {
 Console.WriteLine("Static Method");
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 User u = new User();
 u.age = 32;
 u.Details();
 User.name = "Suresh Dasari";
 User.location = "Hyderabad";
 Console.WriteLine("Name: {0}, Location: {1}, Age: {2}", User.name, User.location, u.age);
 User.Details1();
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();

DOT NET PROGRAMMING

 }
 }
}

If you observe the above example, we created a class called “User” with static and non-static
variables & methods. Here we are accessing non-static variables and methods with an instance of
User class, and static fields & methods are able to access directly with the class name (User).

The following diagram will illustrate more details about how static and non-static variables &
methods can be accessed in our c# application.

If you observe the above diagram, it clearly says that non-static fields and methods can be accessed
only with an instance of the class, and the static fields & methods can be accessed directly with the
class name.

When you run the above c# program, you will get the result as shown below.

This is how you can use static keyword in our c# applications to make aclassormethodsor

variable properties as not instantiable based on our requirements.

DOT NET PROGRAMMING

C# Static Class with Examples
In c#, a static class can be created by using static modifier and the static class can contain only

static members.

Generally, the static class is same as the non-static class, but the only difference is the static class
cannot be instantiated. Suppose if we apply static modifier to a class, we don't require to use the

new keyword to create a class type variable.

Another difference is the static class will contain only static members, but the non-static class can
contain both static and non-static members.

C# Static Class Syntax
In c#, we can create a static class by applying static keyword to the class like as shown below.

static class sample
{
 //static data members
 //static methods
}

If you observe the above syntax, we appliedstatickeyword to the class typeto create a static class

called “sample”. The methods and data members that we are going to implement in the sample
class must bestatic.

In c#, we can access members of a static class directly with the class name. For example, we have a
static class called “User” with a method “Details()” that we can access like User.Details().

C# Static Class Example
Following is the example of defining a static class to access data members and member functions
without creating an instance of the class in the c# programming language.

using System;

namespace Tutlane
{
 static class User
 {
 // Static Variables
 public static string name;
 public static string location;
 public static int age;
 // Static Method

DOT NET PROGRAMMING

 public static void Details()
 {
 Console.WriteLine("Static Method");
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 User.name = "Suresh Dasari";
 User.location = "Hyderabad";
 User.age = 32;
 Console.WriteLine("Name: {0}", User.name);
 Console.WriteLine("Location: {0}", User.location);
 Console.WriteLine("Age: {0}", User.age);
 User.Details();
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we are accessing static class members and functions directly
with the class name because we cannot instantiate the static class.

When you execute the above c# program, you will get the result as shown below.

This is how we can create a static class and use it in our c# applications based on our requirements.

C# Static Class Features
Following are the main features of static class in c# programming language.

The static class in c# will contain only static members.

DOT NET PROGRAMMING

 In c#, the static classes cannot be instantiated.
 C# static classes are sealed,sothey cannot be inherited.
 The static classes in c# will not contain instance constructors.

As discussed in the static keywordarticle,we can use static members in non-static classes such as
normalclasses. For normalclasses,you can create an instance of a class using thenew keyword to
access non-static members and functions, but it cannot access the static members and functions.

To know more about it, refer tostatic keyword in c# with examples.

The advantage of using static classes in c# applications will make sure that instances of classes
cannot be created.

Static Methods
You can define one or more static methods in a non-static class. Static methods can be called
without creating an object. You cannot call static methods using an object of the non-static class.

The static methods can only call other static methods and access static members. You cannot access
non-static members of the class in the static methods.

Example: Static Method

class Program
{
 static int counter = 0;
 string name = "Demo Program";

 static void Main(string[] args)
 {
 counter++; // can access static fields
 Display("Hello World!"); // can call static methods

 name = "New Demo Program"; //Error: cannot access non-static members
 SetRootFolder("C:\MyProgram"); //Error: cannot call non-static method
 }

 static void Display(string text)

DOT NET PROGRAMMING

 {
 Console.WriteLine(text);
 }

 public void SetRootFolder(string path) { }
}

Rules for Static Methods
1. Static methods can be defined using the static keyword before a return type and after an

access modifier.
2. Static methods can be overloaded but cannot be overridden.
3. Static methods can contain local static variables.
4. Static methods cannot access or call non-static variables unless they are explicitly passed as

parameters.

C# - Static Class, Methods, Constructors,
Fields
In C#, static means something which cannot be instantiated. You cannot create an object of a static
class and cannot access static members using an object.

C# classes, variables, methods, properties, operators, events, and constructors can be defined as
static using the static modifier keyword.

Static Class
Apply the static modifier before the class name and after the access modifier to make a class

static. The following defines a static class with static fields and methods.

Example: C# Static Class

public static class Calculator
{
 private static int _resultStorage = 0;

 public static string Type = "Arithmetic";

 public static int Sum(int num1, int num2)
 {
 return num1 + num2;
 }

 public static void Store(int result)
 {
 _resultStorage = result;

DOT NET PROGRAMMING

 }
}

Above, the Calculator class is a static. All the members of it are also static.

You cannot create an object of the static class; therefore the members of the static class can be
accessed directly using a class name like ClassName.MemberName, as shown below.

Example: Accessing Static Members

class Program
{
 static void Main(string[] args)
 {
 var result = Calculator.Sum(10, 25); // calling static method
 Calculator.Store(result);

 var calcType = Calculator.Type; // accessing static variable
 Calculator.Type = "Scientific"; // assign value to static variable
 }
}

Rules for Static Class
1. Static classes cannot be instantiated.
2. All the members of a static class must be static; otherwise the compiler will give an error.
3. A static class can contain static variables, static methods, static properties, static operators,

static events, and static constructors.
4. A static class cannot contain instance members and constructors.
5. Indexers and destructors cannot be static
6. var cannot be used to define static members. You must specify a type of member explicitly

after the static keyword.

7. Static classes are sealed class and therefore, cannot be inherited.
8. A static class cannot inherit from other classes.
9. Static class members can be accessed using ClassName.MemberName.

10. A static class remains in memory for the lifetime of the application domain in which
your program resides.

Static Members in Non-static Class
The normal class (non-static class) can contain one or more static methods, fields, properties, events
and other non-static members.

It is more practical to define a non-static class with some static members, than to declare an entire
class as static.

Static Fields
Static fields in a non-static class can be defined using the static keyword.

DOT NET PROGRAMMING

Static fields of a non-static class is shared across all the instances. So, changes done by one instance
would reflect in others.

Example: Shared Static Fields

public class StopWatch
{
 public static int InstanceCounter = 0;
 // instance constructor
 public StopWatch()
 {
 }
}

class Program
{
 static void Main(string[] args)
 {
 StopWatch sw1 = new StopWatch();
 StopWatch sw2 = new StopWatch();
 Console.WriteLine(StopWatch.NoOfInstances); //2

 StopWatch sw3 = new StopWatch();
 StopWatch sw4 = new StopWatch();
 Console.WriteLine(StopWatch.NoOfInstances);//4
 }
}

Static Constructors
A non-static class can contain a parameterless static constructor. It can be defined with the static
keyword and without access modifiers like public, private, and protected.

The following example demonstrates the difference between static constructor and instance
constructor.

Example: Static Constructor vs Instance Constructor

public class StopWatch
{
 // static constructor
 static StopWatch()
 {
 Console.WriteLine("Static constructor called");
 }

 // instance constructor
 public StopWatch()
 {
 Console.WriteLine("Instance constructor called");
 }

 // static method

DOT NET PROGRAMMING

 public static void DisplayInfo()
 {
 Console.WriteLine("DisplayInfo called");
 }

 // instance method
 public void Start() { }

 // instance method
 public void Stop() { }
}

Above, the non-static class StopWatch contains a static constructor and also a non-static

constructor.

The static constructor is called only once whenever the static method is used or creating an instance
for the first time. The following example shows that the static constructor gets called when the
static method called for the first time. Calling the static method second time onwards won't call a
static constructor.

Example: Static Constructor Execution

StopWatch.DisplayInfo(); // static constructor called here
StopWatch.DisplayInfo(); // none of the constructors called here

Output:
Static constructor called.
DisplayInfo called
DisplayInfo called

The following example shows that the static constructor gets called when you create an instance for
the first time.

Example: Static Constructor Execution

StopWatch sw1 = new StopWatch(); // First static constructor and then instance
constructor called
StopWatch sw2 = new StopWatch();// only instance constructor called
StopWatch.DisplayInfo();

Output:
Static constructor called
instance constructor called
instance constructor called
DisplayInfo called

Rules for Static Constructors
1. The static constructor is defined using the static keyword and without using access

modifiers public, private, or protected.
2. A non-static class can contain one parameterless static constructor. Parameterized static

constructors are not allowed.

DOT NET PROGRAMMING

3. Static constructor will be executed only once in the lifetime. So, you cannot determine when
it will get called in an application if a class is being used at multiple places.

4. A static constructor can only access static members. It cannot contain or access instance
members.

Read and Write only Properties

C# properties are members of a C# class that provide a flexible mechanism
to read, write or compute the values of private fields, in other words, by
using properties, we can access private fields and set their values.
Properties in C# are always public data members. C# properties use get
and set methods, also known as accessors to access and assign values to
private fields.

Now the question is what are accessors?

The get and set portions or blocks of a property are called accessors. These
are useful to restrict the accessibility of a property, the set accessor
specifies that we can assign a value to a private field in a property and
without the set accessor property it is like a readonly field. By the get
accessor we can access the value of the private field, in other words, it
returns a single value. A Get accessor specifies that we can access the
value of a field publically.

We have three types of properties: Read/Write, ReadOnly and WriteOnly.
Let's see each one by one.

DOT NET PROGRAMMING

Declare and read/write example of property
We create an example that is used for the Name and Age properties for a Person. So first of all,
create a Person class then we will use this class in an executable program.

Person.cs

namespace PropertyExample
{
public class Person
{
private string mName=string.Empty;
private int mAge=0;

public string Name
{

get
{

 return mName;
}
set
{

 mName=value;
}

}

 public int Age
{

get
{

 return mAge;
}
set
{
mAge=value;
}

 }} }
Now, we use this class in an executable program by creating an object of the Person class. It is
Visual Studio IntelliSense that automatically shows object properties when we enter the dot (.)
operator after an object. In the following figure we can see Age and Name properties of a Person.

DOT NET PROGRAMMING

Now we read and write values for the property.

Finally we get the output of this program:

Let's see the line of code:

1. objPerson.Name="SandeepSingh";

This line of code is called the set accessor of the Name property in the Person class where we are
using the private field mName in the set block, so this line of code actually assigns a value in the
mName field, in other words we can assign a value to the private field by property.

1. Console.WriteLine("YourNameis:{0}",objPerson.Name);

This line of code is called a get accessor of the Name Property in the Person class; in other words,
we can access the mName private field by the Name Property because the Name property get
accessor returns a value of the private field mName. So the private field is accessible by the
property.

DOT NET PROGRAMMING

Create Readonly Property
We can also create a read only property. Read only means that we can access the valueof aproperty
but we can't assign a value to it. When a property does not have a set accessor then it is a read only
property. For example in the person class we have a Gender property that has only a get accessor
and doesn't have a set accessor. The Person class is:

public class Person
{
public string Gender
{

get
{

return"Male";
}

}
}

When we assign a value to the Gender Property of the Person class object then we get an error that
it is a readonly property and can't assign a value to it.

So the Gender property of the Person class always returns a value and we can't assign a value to it.

Create WriteOnly Property

We can also create a write only property. A write only property is a property that we can assign a
value to but can't get that value because that property doesn't have a get accessor. For example we

DOT NET PROGRAMMING

have a Person class that has the property FirstName that has a set accessor but doesn't have a get
accessor so it is a write only property.

Public class Person
{
private string mFirstName=string.Empty;
public string FirstName
{
set{

mFirstName=value;
}

}}
When we access the value of the FirstName property then we get an error like:

We can create a write only property when we don't define a get accessor.

Assign Values to Properties on Object Creation

We can also assign values to properties when we are creating an object of the class. For example
when we create a Person class object then we can assign a Name and Age property to the person
object.

DOT NET PROGRAMMING

1. Person objPerson= new Person()
2. {
3. Name="SandeepSingh",
4. Age=24
5. };

Properties of objects are a block defined bycurly braces and in the block each property will be
separated by a comma.

Validate Property Value

We can validate a value of a property before it's set to a variable; in other words, we can
check a value to be assigned to a private field and if it is correct then it will be assigned to the
private field, otherwise it will give an error.

Suppose you are a citizen of India and participate as a voter in a parliament election so your
age should be greater than or equal to 18 otherwise you can't vote. To implement this function we

DOT NET PROGRAMMING

have a Voter class and that class has an Age property. The Age property can have a value greater
than or equal to 18 otherwise it will show 0 for the age with a message. Our Voter class is:

using System;
namespace PropertyExample
{
public class Voter
{
 private int mAge=0;
 public int Age
{

 get
 {

returnmAge;
}
set
{

if(value>=18)
{

mAge=value;
}

else
{

Console.WriteLine("Youarenoteligibleforvoting");
}}
}}}

Now create an executable program by which we assign an age value of a Voter.

Using System;

DOT NET PROGRAMMING

namespace PropertyExample
{
class Program
{
static void Main(string[]args)
{

Voter objVoter=new Voter();
Console.WriteLine("Pleaseenteryourage");
objVoter.Age=Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Yourageis:{0}years",objVoter.Age);
Console.ReadKey();

}
}
}

Now we enter a value less than 18 and then we get a message with 0 years.

In the output screen above we get a message from the set accessor and the value isn't set in the
private field so we get a default value of the private field that we already set to 0. Don't be
confusedby the message and return value. Here set is not returning a value. It is just printing a
message on the console before the get accessor calls the Age property. The following picture shows
the message shown before calling the get accessor.

If weuse a value greater than or equal to 18 then we get the private field value without a message.

DOT NET PROGRAMMING

C# Encapsulation with Examples
In c#, Encapsulation is a process of binding the data members and member functions into a single
unit. In c#, the class is the real-time example for encapsulation because it will combine various
types ofdata membersandmember functionsinto a single unit.

Generally, in c# the encapsulation is used to prevent alteration of code (data) accidentally from the
outsidefunctions. In c#, by defining the class fields with properties, we can protect the data from
accidental corruption.

If we define class fields withproperties, then the encapsulated class won’t allow us to access the
fields directly. Instead, we need to use getter and setterfunctionsto read or write data based on our
requirements.

Following is the example of defining an encapsulation class using properties with get and set
accessors.

class User
{
 private string location;
 private string name;
 public string Location
 {
 get
 {
 return location;
 }

DOT NET PROGRAMMING

 set
 {
 location = value;
 }
 }
 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }
}

If you observe the above code, we defined variableswith private access modifiers and exposed those
variables in a public way usingpropertiesget and set accessors. If you want to make any
modifications to the defined variables, then we can make it by usingpropertieswith get and set
accessors.

C# Encapsulation Example
Following is the example of defining an encapsulated class in c# programming language.

using System;

using System.Text;
namespace Tutlane
{
 class User
 {
 private string location;
 private string name;
 public string Location
 {
 get
 {
 return location;
 }
 set
 {

DOT NET PROGRAMMING

 location = value;
 }
 }
 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 User u = new User();
 // set accessor will invoke
 u.Name = "Suresh Dasari";
 // set accessor will invoke
 u.Location = "Hyderabad";
 // get accessor will invoke
 Console.WriteLine("Name: " + u.Name);
 // get accessor will invoke
 Console.WriteLine("Location: " + u.Location);
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we definedfields in encapsulatedclassusingproperties,and we are
able to manipulatefieldvalues using get and set accessors ofproperties.

When you execute the above c# program, you will get the result as shown below.

DOT NET PROGRAMMING

 Inheritance Is As keyword Usage,

In c#, Inheritance is one of the primary concepts of object-oriented programming (OOP), and it is
used to inherit the properties from one class (base) to another (child) class.

The inheritance will enable us to create a new class by inheriting the properties from otherclassesto
reuse, extend, and modify other class members' behaviorbased on our requirements.

In c# inheritance, theclasswhose members are inherited is called a base (parent)class,and
theclassthat inherits the members of thebase (parent) class is called a derived (child)class.

C# Inheritance Syntax

Following is the syntax of implementing an inheritance to define a derived class that inherits the
base class's properties in the c# programming language.

<access_modifier> class <base_class_name>
{
// Base class Implementation
}

<access_modifier> class <derived_class_name> : <base_class_name>
{
// Derived class implementation
}

If you observe the above syntax, we are inheriting the base class's propertiesinto thechildclassto
improve code reusability.

Following is the simple example of implementing inheritance in the c# programming language.

DOT NET PROGRAMMING

public class X
{
 public void GetDetails()
 {
 // Method implementation
 }
}
public class Y: X
{
 // your class implementation
}
class Program
{
 static void Main(string[] args)
 {
 Y y = new Y();
 y.GetDetails();
 }
}

If you observe the above example, we defined a class “X” with the method called “GetDetails” and
the class “Y” is inheriting from class “X”. After that, we call a “GetDetails” method by using an
instance of derived class “Y”.

In c#, it’s not possible to inherit the base class constructors in the derived class. The accessibility of
other base class membersalso depends on the access modifiers that we used to define those
members in a baseclass.

C# Inheritance Example

Following is the example of implementing an inheritance by defining two classes in the c#
programming language.

using System;

namespace Tutlane
{
 public class User
 {
 public string Name;
 private string Location;
 public User()
 {
 Console.WriteLine("Base Class Constructor");
 }

DOT NET PROGRAMMING

 public void GetUserInfo(string loc)
 {
 Location = loc;
 Console.WriteLine("Name: {0}", Name);
 Console.WriteLine("Location: {0}", Location);
 }
 }
 public class Details: User
 {
 public int Age;
 public Details()
 {
 Console.WriteLine("Child Class Constructor");
 }
 public void GetAge()
 {
 Console.WriteLine("Age: {0}", Age);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Details d = new Details();
 d.Name = "Suresh Dasari";
 // Compile Time Error
 //d.Location = "Hyderabad";
 d.Age = 32;
 d.GetUserInfo("Hyderabad");
 d.GetAge();
 Console.WriteLine("\nPress Any Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we defined a base class called “User” and inheriting all the user
class propertiesinto a derived class called “Details” and we are accessing all the members of
theUser class with an instance of theDetails class.

If we uncomment the commented code, we will get a compile-time error because the Location
property in theUser class is defined with a private access modifier. Theprivate members can be
accessed only within the class.

When you execute the above c# program, you will get the result as shown below.

DOT NET PROGRAMMING

If you observe the above result, we are able to access all thepropertiesof base class into child class
based on our requirements.

In c#, Structures won’t support inheritance, but they can implement interfaces.

C# Multi-Level Inheritance

Generally, c# supports only single inheritance that means aclasscan only inherit from one
baseclass. However, in c# the inheritance is transitive, and it allows you to define a hierarchical
inheritance for a set of types, and it is called a multi-level inheritance.

For example, if class C is derived from class B, and class B is derived from class A, then class C
inherits the members declared in both class B and class A.

public class A
{
// Implementation
}
public class B: A
{
// Implementation
}
public class C: B
{
// Implementation
}

If you observe the above code snippet, class C is derived from class B, and class B is derived from
class A, then class C inherits the members declared in both class B and class A. This is how we can
implement multi-level inheritance in our applications.

DOT NET PROGRAMMING

C# Multi-Level Inheritance Example

using System;
namespace Tutlane
{
 public class A
 {
 public string Name;
 public void GetName()
 {
 Console.WriteLine("Name: {0}", Name);
 }
 }
 public class B: A
 {
 public string Location;
 public void GetLocation()
 {
 Console.WriteLine("Location: {0}", Location);
 }
 }
 public class C: B
 {
 public int Age;
 public void GetAge()
 {
 Console.WriteLine("Age: {0}", Age);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 C c = new C();
 c.Name = "Suresh Dasari";
 c.Location = "Hyderabad";
 c.Age = 32;
 c.GetName();
 c.GetLocation();
 c.GetAge();
 Console.WriteLine("\nPress Any Key to Exit..");
 Console.ReadLine();
 }

DOT NET PROGRAMMING

 }
}

If you observe the above example, we implemented three classes (A, B, C), and class C is derived
from class B, and class B is derived from class A.

By implementing a multi-level inheritance, class C can inherit the members declared in class B and
class A.

When you execute the above c# program, you will get the result as shown below.

C# Multiple Inheritance

As discussed, c# supports only single inheritance that means a class can only inherit from one
baseclass. If we try to inherit a class from multiple base classes, then we will get compile-time
errors.

public class A
{
// Implementation
}
public class B
{
// Implementation
}
public class C: A, B
{
// Implementation
}

If you observe the above code snippet, class C is trying to inheritpropertiesfrom both classes A and
B simultaneously, which will lead to compile-time errors like “Class C cannot have multiple
classes: A and B”.

As discussed, multi-level inheritance is supported in c#, but multiple inheritance is not supported.
If you want to implement multiple inheritance in c#, we can achieve this by using interfaces. In the
next chapters, we will learn how to useinterfacesto achieve multiple inheritance in a detailed
manner.

DOT NET PROGRAMMING

n c#, sealed is a keyword used to stop inheriting the particular class from other classes. We can also
prevent overriding the particular properties or methods based on our requirements.

Generally, when we create a particular class we can inherit all the properties and methods in any
class. If you want to restrict access to a defined class and its members, then by using a sealed
keyword, we can prevent other classes from inheriting the defined class.

C# Sealed Class

In c#, a sealed class can define by using a sealed keyword. As discussed, when we define a class
with the sealed keyword, then we don’t have a chance to inherit that particular class.

The following are the various ways of defining sealed classes in the c# programming language.

//TYPE 1

sealed class Test
{

public string Name;
public string Location;

}

//TYPE 2
public sealed class Test1

{
public int Age;

}

//TYPE 3
sealed public class Test2
{
// Implementation
}

If you observe the above code snippet, we defined various classes with a sealed keyword to ensure
that the defined classes are not inheritable to any class. In c#, we can use a sealed keyword before
or after the access modifier to define sealed classes.

C# Sealed Class Example

Following is the example of using a sealed keyword to define sealed classes in the c# programming
language.

 using System;
namespace Tutlane

DOT NET PROGRAMMING

{
 // Base Class
 sealed class Users
 {
 public string name = "Suresh Dasari";
 public string location = "Hyderabad";
 public void GetInfo()
 {
 Console.WriteLine("Name: {0}", name);
 Console.WriteLine("Location: {0}", location);
 }
 }
 // Derived Class
 public class Details : Users
 {
 public int age = 32;
 public void GetAge()
 {
 Console.WriteLine("Age: {0}", age);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Details d = new Details();
 d.GetAge();
 d.GetInfo();
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we defined a class “Users” with a sealed keyword, and we are
trying to inherit the properties from the Users class using the Details class.

 When you execute the above c# program, we will get the result as shown below.

DOT NET PROGRAMMING

If you observe the above result, we are getting compile-time errors because we tried to inherit
sealed class properties in another class.

C# Sealed Method or Property

In c#, we can also use the sealed keyword on a method or property that overrides a virtual method
or property in a base class to allow other classes to derive from the base class and prevent them
from overriding specific virtual methods or properties.

 Following is the example of using a sealed keyword on a method that overrides a virtual method in
a base class.

using System;
namespace Tutlane
{
 public class A
 {
 public virtual void GetInfo()
 {
 Console.WriteLine("Base Class A Method");
 }
 public virtual void Test()
 {
 Console.WriteLine("Base Class A Test Method");
 }
 }
 public class B: A
 {
 public sealed override void GetInfo()
 {
 Console.WriteLine("Derived Class B Method");
 }
 public override void Test()
 {
 Console.WriteLine("Derived Class B Test Method");
 }
 }
 public class C: B
 {
 // Compile time error
 public override void GetInfo()
 {

DOT NET PROGRAMMING

 Console.WriteLine("Age: {0}", base.age);
 }
 public override void Test()
 {
 Console.WriteLine("Derived Class C Test Method");
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 C c = new C();
 c.GetInfo();
 c.Test();
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we used a sealed keyword on the method (GetInfo) that
overrides a base class virtual method. In the above example, class C is inherited from class B, but
class C cannot override a virtual method GetInfo that is declared in class A because that method is
sealed in class C.

When you execute the above c# program, you will get a result, as shown below.

This is how you can use the sealed keyword on a method or property that overrides a base class
virtual method or property.

Instead of using sealed keyword, we can prevent derived classes to override base class methods or
properties by not declaring them as virtual.

C# Sealed Keyword Features

The following are the important points which we need to remember about the sealed keyword in the
c# programming language.

DOT NET PROGRAMMING

 In c#, to apply a sealed keyword on a method or property, it must always use with override.
 In c#, we should not use an abstract modifier with a sealed class because an abstract class

must be inherited by a class that provides an implementation of the abstract methods or
properties.

 In c#, the local variables cannot be sealed.
 In c#, structs are implicitly sealed; they cannot be inherited.

Delegation

n c#, the delegate is a type that defines a method signature, and it is useful to hold the reference of
one or more methods which are having the same signatures.By using delegates, you can invoke the
methods and send methods as an argument to other methods.In c#, the delegate is a reference type,
and it’s type-safe and secure. The delegates are similar to function pointers in c++.

C# Delegate Declaration Syntax

In c#, the declaration of delegate will be same as method signature, but the only difference is we
will use a delegate keyword to define delegates.Following is the syntax of defining a delegate

using delegate keyword in c# programming language.

<access_modifier> delegate <return_type> <delegate_name>()

Following is the example of declaring a delegate using delegate keyword in c#.

public delegate void UserDetails(string name);

If you observe the above example, a delegate's declaration is same as a method declaration with
required parameter types and return value.The above defined method “UserDetails” can be pointed
to any other method with the same parameters and return type.In c#, the delegates must be
instantiated with a method or expression with the same return type and parameters. We can invoke a
method through the delegate instance.

DOT NET PROGRAMMING

C# Delegate Example

using System;
namespace Tutlane
{
 // Declare Delegate
 public delegate void SampleDelegate(int a, int b);
 class MathOperations
 {
 public void Add(int a, int b)
 {
 Console.WriteLine("Add Result: {0}", a + b);
 }
 public void Subtract(int x, int y)
 {
 Console.WriteLine("Subtract Result: {0}", x - y);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("****Delegate Example****");
 MathOperations m = new MathOperations();
 // Instantiate delegate with add method
 SampleDelegate dlgt = m.Add;
 dlgt(10, 90);
 // Instantiate delegate with subtract method
 dlgt = m.Subtract;
 dlgt(10, 90);
 Console.ReadLine();
 }
 }
}

If you observe the above example, we created a delegate called “SampleDelegate” and the delegate
has been instantiated by using defined methods.

When you execute the above c# program, you will get the result as shown below.

DOT NET PROGRAMMING

This is how we can use delegates in our applications to call all the methods which are having the
same signatures with a single object.In c#, you can invoke the delegates same as method or by using
the Invoke method like as shown below.

SampleDelegate dlgt = m.Add;
dlgt(10, 90);
// or
dlgt.Invoke(10, 90);

Types of Delegates in C#

In c#, we have two different types of delegates available. Those are

 Single cast Delegates
 Multicast Delegates

Single Cast Delegates in C#

In c#, a delegate that points to a single method is called a single cast delegate, and it is used to hold
the reference of a single method as explained in the above example.

Multicast Delegates in C#

In c#, a delegate that points to multiple methods is called a multicast delegate, and it is used to hold
the reference of multiple methods with a single delegate.

By using "+" operator, we can add the multiple method references to the delegate object. Same

way, by using "-" operator we can remove the method references from the delegate object.

In c#, Multicast delegates will work with only the methods that are having void as return type. If

we want to create a multicast delegate with the return type, then we will get a return type of the last
method in the invoking list.

C# Multicast Delegate Example

Following is the example of implementing a multicast delegate to hold the reference of multiple
methods with "+" operator in c# programming language.

using System;
namespace Tutlane
{
 // Declare Delegate
 public delegate void SampleDelegate(int a, int b);
 class MathOperations
 {
 public void Add(int a, int b)
 {
 Console.WriteLine("Add Result: {0}", a + b);
 }
 public void Subtract(int x, int y)

DOT NET PROGRAMMING

 {
 Console.WriteLine("Subtract Result: {0}", x - y);
 }
 public void Multiply(int x, int y)
 {
 Console.WriteLine("Multiply Result: {0}", x * y);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("****Delegate Example****");
 MathOperations m = new MathOperations();
 // Instantiate delegate with add method
 SampleDelegate dlgt = m.Add;
 dlgt += m.Subtract;
 dlgt += m.Multiply;
 dlgt(10, 90);
 Console.ReadLine();
 }
 }
}

If you observe the above example, we created a delegate called “SampleDelegate” and holding the
reference of multiple methods using "+" operator. Our delegate becomes a multicast delegate, and

invoking a dlgt instance will invoke all the methods sequentially.

When you execute the above c# program, you will get the result as shown below.

This is how we can use multicast delegates in c# to hold the reference of multiple methods based on
our requirements.

Pass Method as Parameter using Delegate

By using delegates in c#, we can pass methods as the parameter. Following is the example of
sending methods as a parameter using a delegate.

using System;
namespace Tutlane
{

DOT NET PROGRAMMING

 // Declare Delegate
 public delegate void SampleDelegate(int a, int b);
 class MathOperations
 {
 public void Add(int a, int b)
 {
 Console.WriteLine("Add Result: {0}", a + b);
 }
 public void Subtract(int x, int y)
 {
 Console.WriteLine("Subtract Result: {0}", x - y);
 }
 public void Multiply(int x, int y)
 {
 Console.WriteLine("Multiply Result: {0}", x * y);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("****Delegate Example****");
 MathOperations m = new MathOperations();
 SampleMethod(m.Add, 10, 90);
 SampleMethod(m.Subtract, 10, 90);
 SampleMethod(m.Multiply, 10, 90);
 Console.ReadLine();
 }
 static void SampleMethod(SampleDelegate dlgt, int a, int b)
 {
 dlgt(a, b);
 }
 }
}

If you observe the above example, we created a “SampleMethod” with a delegate as a parameter
type. By declaring like this, you can pass the method as a parameter to the newly created method
(SampleMethod).

When you execute the above c# program, you will get the result as shown below.

DOT NET PROGRAMMING

C# Delegates Overview

The following are the important properties of delegate in c# programming language.

 We need to use a delegate keyword to define delegates.

 In c#, delegates are used to hold the reference of one or more methods that have the same
signature as delegates.

 In c#, delegates are like function pointers in C++, but these are type-safe and secure.
 By using delegates, you can pass methods as a parameter to the other methods.
 In c#, we can invoke delegates as normal methods or by using Invoke property.
 By using "+" operator, we can add multiple methods to delegates.

 By using delegates, we can call multiple methods with a single event.

--

 Polymorphism
The word polymorphism means having many forms. In object-oriented programming paradigm,
polymorphism is often expressed as 'one interface, multiple functions'.

Polymorphism can be static or dynamic. In static polymorphism, the response to a function is
determined at the compile time. In dynamic polymorphism, it is decided at run-time.

Static Polymorphism
The mechanism of linking a function with an object during compile time is called early binding. It
is also called static binding. C# provides two techniques to implement static polymorphism. They
are −

 Function overloading
 Operator overloading

We discuss operator overloading in next chapter.

DOT NET PROGRAMMING

Function Overloading
You can have multiple definitions for the same function name in the same scope. The definition of
the function must differ from each other by the types and/or the number of arguments in the
argument list. You cannot overload function declarations that differ only by return type.

The following example shows using function print() to print different data types −

using System;

namespace PolymorphismApplication {
 class Printdata {
 void print(int i) {
 Console.WriteLine("Printing int: {0}", i);
 }
 void print(double f) {
 Console.WriteLine("Printing float: {0}" , f);
 }
 void print(string s) {
 Console.WriteLine("Printing string: {0}", s);
 }
 static void Main(string[] args) {
 Printdata p = new Printdata();

 // Call print to print integer
 p.print(5);

 // Call print to print float
 p.print(500.263);

 // Call print to print string
 p.print("Hello C++");
 Console.ReadKey();
 }
 }
}

When the above code is compiled and executed, it produces the following result −

Printing int: 5
Printing float: 500.263
Printing string: Hello C++

DOT NET PROGRAMMING

Dynamic Polymorphism
C# allows you to create abstract classes that are used to provide partial class implementation of an
interface. Implementation is completed when a derived class inherits from it

. Abstract classes contain abstract methods, which are implemented by the derived class. The
derived classes have more specialized functionality.

 using System;

namespace PolymorphismApplication {
 abstract class Shape {
 public abstract int area();
 }

 class Rectangle: Shape {
 private int length;
 private int width;

 public Rectangle(int a = 0, int b = 0) {
 length = a;
 width = b;
 }
 public override int area () {
 Console.WriteLine("Rectangle class area :");
 return (width * length);
 }
 }
 class RectangleTester {
 static void Main(string[] args) {
 Rectangle r = new Rectangle(10, 7);
 double a = r.area();
 Console.WriteLine("Area: {0}",a);
 Console.ReadKey();
 }
 }
}

When the above code is compiled and executed, it produces the following result −

Rectangle class area :
Area: 70

When you have a function defined in a class that you want to be implemented in an inherited
class(es), you use virtual functions. The virtual functions could be implemented differently in
different inherited class and the call to these functions will be decided at runtime.

Dynamic polymorphism is implemented by abstract classes and virtual functions.

The following program demonstrates this −

DOT NET PROGRAMMING

 using System;

namespace PolymorphismApplication {
 class Shape {
 protected int width, height;

 public Shape(int a = 0, int b = 0) {
 width = a;
 height = b;
 }
 public virtual int area() {
 Console.WriteLine("Parent class area :");
 return 0;
 }
 }
 class Rectangle: Shape {
 public Rectangle(int a = 0, int b = 0): base(a, b) {

 }
 public override int area () {
 Console.WriteLine("Rectangle class area :");
 return (width * height);
 }
 }
 class Triangle: Shape {
 public Triangle(int a = 0, int b = 0): base(a, b) {
 }
 public override int area() {
 Console.WriteLine("Triangle class area :");
 return (width * height / 2);
 }
 }
 class Caller {
 public void CallArea(Shape sh) {
 int a;
 a = sh.area();
 Console.WriteLine("Area: {0}", a);
 }
 }
 class Tester {
 static void Main(string[] args) {
 Caller c = new Caller();
 Rectangle r = new Rectangle(10, 7);
 Triangle t = new Triangle(10, 5);

 c.CallArea(r);
 c.CallArea(t);
 Console.ReadKey();
 }
 }
}

When the above code is compiled and executed, it produces the following result −

Rectangle class area:
Area: 70
Triangle class area:
Area: 25

DOT NET PROGRAMMING

The Virtual and Override Keywords

In c#, the virtual keyword is useful to override base class members such as properties, methods,
etc., in the derived class to modify it based on our requirements.

Following is the simple example of defining a method with the virtual keyword in the c#
programming language.

public class Users
{
 public virtual void GetInfo()
 {
 Console.WriteLine("Base Class");
 }
}

If you observe the above code snippet, we defined a GetInfo method with the virtual keyword. The
GetInfo method can be overridden by any derived class that inherits properties from a base class
called Users.

Generally, whenever the virtual method is invoked, the run-time object will check for an overriding
member in the derived class. If no derived class has overridden the member, then the virtual method
will be treated as an original member.

In c#, by default all the methods are non-virtual, and we cannot override non-virtual methods. If
you want to override a method, you need to define it with the virtual keyword.

The virtual keyword in c# cannot be used with static, abstract, private, or override modifiers. In c#,
the virtual inherited properties can be overridden in a derived class by including a property
declaration that uses the override modifier.

C# Virtual Keyword Example

Following is the example of using a virtual keyword to allow class members to be overridden in a
derived class in the c# programming language.

DOT NET PROGRAMMING

using System;

namespace Tutlane
{
 // Base Class
 public class BClass
 {
 public virtual string Name { get; set; }
 public virtual void GetInfo()
 {
 Console.WriteLine("Learn C# Tutorial");
 }
 }
 // Derived Class
 public class DClass : BClass
 {
 private string name;
 public override string Name
 {
 get
 {
 return name;
 }
 set
 {
 if (!string.IsNullOrEmpty(value))
 {
 name = value;
 }
 else
 {
 name = "No Value";
 }
 }
 }
 public override void GetInfo()
 {
 Console.WriteLine("Welcome to Tutlane");
 }
 }
 class Program
 {
 static void Main(string[] args)
 {

DOT NET PROGRAMMING

 DClass d = new DClass();
 d.GetInfo();
 BClass b = new BClass();
 b.GetInfo();
 d.Name = string.Empty;
 Console.WriteLine(d.Name);
 Console.WriteLine("\nPress Enter Key to Exit..");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we are overriding a base class (BClass) methods and properties
which we defined with a virtual keyword in a derived class (DClass) using override keyword.

When you execute the above c# program, you will get the result as shown below.

This is how we can use virtual keyword in c# to allow class members, such as methods, properties,
etc., to be overridden in a derived class based on our requirements.

--

Abstract Classes, Abstract Methods

n c#, abstract is a keyword, and it is useful to define classes and class members that are needed to
be implemented or overridden in a derived class.

DOT NET PROGRAMMING

In c#, you can use abstract modifiers with classes, methods, properties, events, and indexers based
on our requirements. The members we defined as abstract or included in an abstract class must be
implemented by classes derived from an abstract class.

Now we will see how to use abstract modifier in classes and methods with examples.

C# Abstract Class
In c#, abstract class is a class that is declared with a abstract modifier. If we define a class with

abstract modifier, then that class is intended only to be used as a base class for other classes.

The abstract class cannot instantiate, and it can contain both abstract and non-abstract members.
The class that is derived from the abstract class must implement all the inherited abstract methods
and accessors.

In c#, you can define an abstract class by using abstract keyword. Following is the example of

defining an abstract class using abstract keyword.

abstract class Info
{
abstract public void GetDetails();
}

If you observe the above code snippet, we defined an abstract class (Info) using abstract

keyword with GetDetails method signature.

If we define a method with abstract modifier, then that method implementation must be done in

a derived class.

Following is the example of implementing a class by deriving from the abstract class.

class User: Info
{
 public override void GetDetails()
 {
 // Method Implementation
 }
}

If you observe the code snippet, we inherited an abstract class (Info) in the User class and
implemented a defined abstract method in the User class using the override keyword. In c#, abstract
methods are internally treated as virtual methods, so those methods need to be overridden by the
derived class.

In c#, we should not use a sealed keyword with an abstract class because the sealed keyword will
make a class not inheritable but abstract modifier requires a class to be inherited.

C# Abstract Class Example
Following is the example of defining an abstract class using abstract modifier in c#

programming language.

DOT NET PROGRAMMING

using System;

namespace Tutlane
{
 abstract class Info
 {
 abstract public void GetDetails(string x, string y, int z);
 }
 class User: Info
 {
 public override void GetDetails(string a, string b, int c)
 {
 Console.WriteLine("Name: {0}", a);
 Console.WriteLine("Location: {0}", b);
 Console.WriteLine("Age: {0}", b);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 User u = new User();
 Console.WriteLine("****Abstract Class Example****");
 u.GetDetails("Suresh Dasari", "Hyderabad", 32);
 Console.ReadLine();
 }
 }
}

If you observe the above example, we defined an abstract class called “Info” with required
methods, and the derived class “User” has implemented all the inherited abstract methods and
accessors.

When you execute the above c# program, you will get the result as shown below.

This is how we can use abstract classes in our applications based on our requirements.

DOT NET PROGRAMMING

C# Abstract Class Features
The following are important features of abstract class in c# programming language.

 In c#, abstract classes cannot be instantiated.
 The abstract classes can contain both abstract and non-abstract methods and accessors.
 In c#, we should not use a sealed keyword with abstract class because the sealed keyword

will make a class not inheritable, but abstract modifier requires a class to be inherited.

 A class that is derived from an abstract class must include all the implementations of
inherited abstract methods and accessors.

C# Abstract Method
In c#, the abstract method is a method that is declared with a abstract modifier. If we define a

method with abstract modifier, then that method doesn’t contain any implementation, and

method declaration ends with a semicolon.

Following is the example of defining an abstract method in the c# programming language.

public abstract void GetDetails();

The abstract methods in c# are permitted to declare only in abstract classes, and the class that is
derived from an abstract class must provide an implementation for defined abstract methods.

In c#, abstract methods are internally treated as virtual methods. Hence, those methods need to be
overridden in the derived class, and we should not static or virtual modifiers during abstract method
declaration.

C# Abstract Method Example
Following is the example of declaring an abstraction method in an abstract class in the c#
programming language.

using System;

namespace Tutlane
{
 abstract class Info
 {
 public void Welcome()
 {
 Console.WriteLine("Welcome to Tutlane");
 }
 public int age = 32;
 public abstract void GetDetails(string x, string y);

DOT NET PROGRAMMING

 }
 class User: Info
 {
 public override void GetDetails(string a, string b)
 {
 Welcome();
 Console.WriteLine("Name: {0}", a);
 Console.WriteLine("Location: {0}", b);
 Console.WriteLine("Age: {0}", age);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 User u = new User();
 Console.WriteLine("****Abstract Class Example****");
 u.GetDetails("Suresh Dasari", "Hyderabad");
 Console.ReadLine();
 }
 }
}

If you observe the above example, we defined an abstract class called “Info” with required abstract
and non-abstract methods. The derived class “User” has implemented all the inherited abstract
methods and accessors.

When you execute the above c# program, we will get the result as shown below.

This is how we can use abstract methods in c# abstract classes based on our requirements.

C# Abstract Method Features
The following are the important features of the abstract method in the c# programming language.

DOT NET PROGRAMMING

 In c#, abstract methods are permitted to declare only within abstract classes.
 The abstract method declaration will not contain any implementation; only the derived

classes will provide an actual implementation for abstract methods.
 In c#, abstract methods are internally treated as virtual methods, so they need to be

overridden in the derived class.
 We should not use static or virtual modifiers during the abstract method declaration.

In c#, abstract properties will act the same as abstract methods, but the only difference is declaration
and invocation syntax.

	​ C# Class Members
	​ C# Class
	​ Declaring a Class in C#
	​ C# Class Example
	​ C# Class Members
	​ C# Object
	​ Creating Objects in C#
	​ C# Objects Example
	​ C# Constructor Syntax
	​ C# Constructor Types
	​ C# Default Constructor
	​ C# Parameterized Constructor
	​ Private Constructors
	​ Example
	​ ----------------------
	​ C# Constructor Overloading
	​ C# Constructor Chaining

	​ C# Destructor with Examples
	C# Destructor Syntax
	​ C# Destructor Example
	​ Different Data Types in C#
	​ C# Value Data Types
	​ C# Reference Data Types
	​ C# Pointer Data Types

	​ C# Variables with Examples
	​ Syntax of C# Variables Declaration
	​ C# Variables Declaration Example
	​ Output of C# Variables Declaration Example
	​ Rules to Declare C# Variables
	​ C# Multiple and Multi-Line Variables Declaration
	​ C# Variables Assignment
	​ Properties
	​ Methods

	​ C# Basic Input and Output
	​ C# Output
	​ Example 1: Printing String using WriteLine()
	​ Difference between WriteLine() and Write() method
	​ Example 2: How to use WriteLine() and Write() method?

	​ Printing Variables and Literals using WriteLine() and Write()
	​ Example 3: Printing Variables and Literals

	​ Combining (Concatenating) two strings using + operator and printing them
	​ Example 4: Printing Concatenated String using + operator

	​ Printing concatenated string using Formatted String [Better Alternative]
	​ Example 5: Printing Concatenated string using String formatting

	​ C# Input
	​ Example 6: Get String Input From User
	​ Difference between ReadLine(), Read() and ReadKey() method:

	​ C# Arrays
	​ C# Arrays Declaration
	​ C# Arrays Initialization
	​ C# Accessing an Array Elements
	​ C# Access Array Elements with For Loop
	​ C# Access Array Elements with Foreach Loop
	​ C# Array Types
	​ C# Array Class

	​ C# String with Examples
	​ C# String Declaration and Initialization
	​ C# string vs. String
	​ C# String Immutability
	​ C# String Literals (Regular, Verbatim)
	​ C# Format Strings
	​ C# Access Individual Characters from Strings
	​ C# String Example
	​ C# String Properties
	​ C# String Methods
	​ String Contains String

	​ C# Static Keyword
	​ C# Static Variables
	​ C# Static Keyword Example

	​ C# Static Class with Examples
	​ C# Static Class Syntax
	​ C# Static Class Example
	​ C# Static Class Features
	​ Static Methods
	​ Rules for Static Methods

	​ C# - Static Class, Methods, Constructors, Fields
	​ Static Class
	​ Rules for Static Class
	Static Members in Non-static Class
	​ Static Fields
	Static Constructors
	​ Rules for Static Constructors
	​ Declare and read/write example of property
	​ Create Readonly Property
	​ Create WriteOnly Property
	​ Assign Values to Properties on Object Creation
	​ Validate Property Value

	​ C# Encapsulation with Examples
	​ C# Encapsulation Example
	​ C# Inheritance Syntax
	​ C# Inheritance Example
	​ C# Multi-Level Inheritance
	​ C# Multi-Level Inheritance Example
	​ C# Multiple Inheritance
	​ C# Sealed Class
	​ C# Sealed Class Example
	​ C# Sealed Method or Property
	​ C# Sealed Keyword Features
	​ C# Delegate Declaration Syntax
	​ C# Delegate Example
	​ Types of Delegates in C#
	Single Cast Delegates in C#
	​ Multicast Delegates in C#
	​ C# Multicast Delegate Example
	​ Pass Method as Parameter using Delegate
	​ C# Delegates Overview
	​ Static Polymorphism
	​ Function Overloading
	​ Dynamic Polymorphism
	​ C# Virtual Keyword Example
	​ C# Abstract Class
	​ C# Abstract Class Example
	​ C# Abstract Class Features
	C# Abstract Method
	​ C# Abstract Method Example
	​ C# Abstract Method Features

